English

Latest breakthrough! 3500W free output blue semiconductor laser

178
2024-09-03 13:51:31
See translation

The 3500W free output blue semiconductor laser beam is output in a free space manner, with a rectangular spot directly acting on the material surface without the need for fiber optics or laser processing heads. This laser has a wavelength of 455 ± 10nm, with continuously adjustable power and a maximum output power of over 3500W. It is mainly used for non-ferrous metal cladding, quenching, etc., to greatly improve processing efficiency and quality.

Figure 1: 3500W Free Output Blue Light Semiconductor Laser Cladding Sample

Experiment 1


Figure 2 (a-e) OM images of a single layer at different powers; (f) Geometric dimensions; (g) Fusion efficiency; (h) Comparison of fusion efficiency and other research results; (i) Schematic diagram of high-power infrared laser and (j) high-power blue laser processing

The Institute of Special Materials at Shanghai Jiao Tong University developed a 3500W, rectangular spot (7.5 mm2) blue laser additive manufacturing equipment based on Guangdong Institute of Hard Science and Technology and Zhuo Jie Laser. Using directional energy deposition technology, pure copper was successfully deposited on Inconel 718 chromium nickel iron alloy substrate, achieving a cladding efficiency of 62.84 mm2/s.

——Achieving ultra-high efficiency in directed energy deposition of pure copper on Inconel 718 substrate with a 3500 W blue laser,Materials Letters,Volume 372,2024.

Experiment 2

Figure 3 (a) B-LMD process (b) B-LMD process schematic diagram

 



Figure 4 (c) Comparison of tensile properties between B-LMD pure copper and other additive manufactured pure copper

The New Materials Research Institute of Guangdong Academy of Sciences, based on the 3500W, rectangular spot (7.5 mm2) blue laser additive manufacturing equipment developed by Guangdong Institute of Science and Technology and Zhuojie Laser, successfully deposited pure copper material on 316L stainless steel substrate through laser metal deposition process, with a density of 97.9%, tensile strength of 244 ± 9 MPa, yield strength of 158 ± 6MPa, all of which are the highest reported values so far. The elongation at break can reach 14.7 ± 0.8%, and the comprehensive performance is better than that of pure copper samples prepared by SLM and MEAM processes.

——Comprehensive study of microstructural evolution and strengthening mechanism of high-performance pure copper prepared by blue laser metal deposition (B-LMD), Materials Science and Engineering: A.

Source: KCTII Institute of Technology

Related Recommendations
  • University of Science and Technology of China Reveals High Precision Planarity Measurement of Cryogenic Arrays

    Professor Wang Jian, Deputy Chief Designer of the Low Temperature Array High Precision Planeness Survey Wide Area Sky Survey Telescope (WFST) announced by the University of Science and Technology of China, and teacher of the State Key Laboratory of Nuclear Detection and Nuclear Electronics, School of Physics, University of Science and Technology of China, is a research team of the Chinese Academy ...

    2023-08-14
    See translation
  • Scientists have developed the most powerful ultraviolet laser using LBO crystals

    It is reported that recently researchers from the Chinese Academy of Sciences have achieved the highest power output of 193 nm and 221 nm lasers using lithium borate (LBO) crystals. This achievement lays the foundation for the further application of the laser in deep ultraviolet (DUV) spectroscopy.The laser in DUV spectroscopy has many applications in science and technology, such as defect detecti...

    2024-04-07
    See translation
  • Researchers are studying lasers for controlling magnetic ripple interactions

    One vision for computing the future is to use ripples in magnetic fields as the fundamental mechanism. In this application, magnetic oscillators can be comparable to electricity and serve as the foundation of electronic products.In traditional digital technology, this magnetic system is expected to be much faster than today's technology, from laptops and smartphones to telecommunications. In quant...

    2024-02-11
    See translation
  • China University of Science and Technology realizes millisecond level integrated quantum memory

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the field of integrated quantum storage. The research team led by Li Chuanfeng and Zhou Zongquan has improved the storage time of integrated quantum memory from 10 microseconds to milliseconds based on their original noiseless photon echo (NLPE) scheme, while s...

    03-31
    See translation
  • The global laser technology market is expected to reach 29.5 billion US dollars by 2029

    Recently, Markets And Markets released a five-year assessment report on the global laser industry. According to the report, the global laser technology market is expected to reach $20 billion by 2024 and is projected to reach $29.5 billion by 2029, with a compound annual growth rate of 8.0% during the forecast period.Global Laser Technology Market ForecastThe reasons for market growth include: the...

    2024-07-25
    See translation