English

The wide application of laser plastic welding technology in the field of automobile manufacturing

33
2024-09-26 13:52:28
See translation

With the rapid development of society, people's demands for energy conservation, emission reduction, and safety in automobiles are increasing. Automobile manufacturers are seeking lightweight manufacturing processes for automobiles, changing traditional component packaging processes, and so on. Laser plastic welding technology has emerged, and below is a brief sharing of the application of plastic laser welding technology in the field of automotive manufacturing.


Diagram of Automotive Plastic Parts Products



A plastic finished product on a car may be made of multiple materials or components. To combine the various components, mechanical fasteners, adhesives, and welding processes can be used for processing. Among these three joining methods, mechanical fasteners can quickly connect the two components, but the leak proof function of the joint is poor, and local stress can easily cause separation between polymer materials; Adhesive can form seams with excellent leak proof function, but it is difficult to handle and has a slow curing speed. At the same time, when using adhesive bonding, there are high requirements for joint preparation procedures and surface cleanliness; The welding process has a better effect, producing adhesive and stable seams, with mechanical properties similar to the parent material, and a variety of welding forms. Different welding processes can be used according to different materials, sizes, and applications.

A plastic finished product on a car may be made of multiple materials or components. To combine the various components, mechanical fasteners, adhesives, and welding processes can be used for processing. Among these three joining methods, mechanical fasteners can quickly connect the two components, but the leak proof function of the joint is poor, and local stress can easily cause separation between polymer materials; Adhesive can form seams with excellent leak proof function, but it is difficult to handle and has a slow curing speed. At the same time, when using adhesive bonding, there are high requirements for joint preparation procedures and surface cleanliness; The welding process has a better effect, producing adhesive and stable seams, with mechanical properties similar to the parent material, and a variety of welding forms. Different welding processes can be used according to different materials, sizes, and applications.

Welding of plastic components
The so-called welding of plastic components refers to the use of heating to melt the surfaces of two thermoplastic components simultaneously, and to combine the two components into one under external force.

What are the welding processes for plastic parts
Plastic welding processes can be divided into two categories: one is mechanical mobile welding processes, including ultrasonic welding, friction welding, and vibration welding; The second is the external heating welding process, including hot plate welding, hot gas welding, and implant welding. According to different heating methods, it can also be divided into heating tool welding, induction welding, ultrasonic welding, high-frequency welding, hot plate welding, laser welding, vibration friction welding, infrared welding, hot pile welding, and hot air welding.

Plastic parts can be seen everywhere on the exterior, interior, functional, and structural components of modern vehicles. Replacing traditional metal materials with plastic has achieved a very outstanding weight reduction effect, which is of great significance for saving energy and reducing greenhouse gas emissions.

Replacing metal with plastic intake manifolds in automobiles can reduce mass by 40% to 60%, with a clear surface and low flow resistance, which can improve engine performance and play a positive role in improving combustion efficiency, reducing fuel consumption, and reducing vibration and noise. According to statistics, there are currently dozens of types of plastics used in automobiles, including polypropylene, polyethylene, polyurethane, polyvinyl chloride, ABS, nylon, and thermosetting composite materials. The average amount of plastic used per car accounts for 5% to 10% of the car's weight, and the requirements for lightweight, safety, and decorative features have also driven the progress of plastic laser welding technology in the automotive field.

At present, plastic laser welding technology has been successfully applied in the manufacturing industry of automotive bumpers, instrument panels and dashboards, brake lights, airbags, car toolboxes, car door panels, and other engine related components. With many traditional metal components starting to be replaced with plastics, such as intake manifolds, instrument pointers, radiator reinforcements, fuel tanks, and filters, there is a particularly good opportunity for the application and discussion of new technologies in the field of plastic welding. Low energy consumption, high-efficiency, non-toxic, and pollution-free welding equipment will become the trend of technological progress in automotive welding lines in the future.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • A new approach to 3D printing has been published in a Nature journal

    In the last century, the improvement of mechanical properties of structural metals was mainly achieved through the creation of increasingly complex chemical compositions. The complexity of this ingredient increases costs, creates supply fragility, and makes recycling more complex.As a relatively new metal processing technology, metal 3D printing provides the possibility to re-examine and simplify ...

    2024-11-29
    See translation
  • The physicist who built the ultrafast "attosecond" laser won the Nobel Prize

    Pierre Agostini, Ferenc Krausz, and Anne L'Huillier won the award for their ultra short optical pulses, which made close research on electrons possible.Ferenc Klaus, Anne Lullier, and Pierre Agostini (from left to right)Image sources: BBVA Foundation, Kenneth Ruona/Lund University, Ohio State UniversityThis year's Nobel Prize in Physics was awarded to three physicists - Pierre Agostini of Ohio St...

    2023-10-09
    See translation
  • The Ruefeng 30w picosecond laser brings unprecedented possibilities in the art of cutting resin eye lenses

    Ruifeng Picosecond laser: Open the door to the art of cutting resin eye lensesAs an important innovation in the modern eyewear industry, resin lenses bring us visual clarity and comfort with their lightness, transparency and impact resistance.However, with the continuous improvement of people's demand for quality and personalization, how to achieve accurate and beautiful cutting on resin eye lense...

    2023-09-14
    See translation
  • Four ways researchers harness the power of lasers to achieve manufacturing excellence

    The use of industrial lasers has become a viable option for many manufacturing processes. It enables workers to simplify steps, improve precision and benefit from the benefits associated with output. Decision makers will get the best results when they consider the specific possibilities of using lasers in manufacturing. Here are some options.Improved cleaning and texturing methodsMany man...

    2023-08-04
    See translation
  • Significant progress made in 808nm high-power semiconductor laser chips

    The R&D team of Xi'an Lixin Optoelectronics Technology Co., Ltd. (hereinafter referred to as "Lixin Optoelectronics") has made significant progress in 808nm high-power semiconductor laser chips through continuous technological breakthroughs.808nm semiconductor laser, as an ideal and efficient solid-state laser pump source, plays an important role in advanced manufacturing, mechanical processin...

    2024-06-14
    See translation