English

Xi'an Institute of Optics and Fine Mechanics has made new progress in the field of metasurface nonlinear photonics

1130
2024-09-27 15:23:50
See translation

Recently, the Research Group of Nonlinear Photonics Technology and Applications in the State Key Laboratory of Transient Optics and Photonics Technology of Xi'an Institute of Optics and Fine Mechanics has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in the internationally famous journal Nanoscale Horizons. The first author of the paper is Zhang Congfu, a 2021 doctoral student.

The mid infrared band (3-5 μ m) plays a crucial role as an atmospheric window in many fields such as biomedical and environmental monitoring. Traditional mid infrared detection and imaging technology faces many problems such as low detector sensitivity and large size. Nonlinear frequency upconversion technology converts mid infrared signal light into near-infrared or visible light bands, which can achieve high-sensitivity detection using silicon-based detectors with small size and high quantum efficiency, providing a new technological approach for mid infrared detection and imaging. Numerous studies have shown that metasurfaces can enhance the interaction between light and matter in sub wavelength nanostructures, breaking through the phase matching limitations of traditional nonlinear optical parametric processes. However, existing metasurfaces typically rely on narrowband high-quality factor resonances to achieve local field enhancement, which poses significant challenges for the further development of ultra wideband nonlinear frequency conversion technology.

Figure (a) Metasurface structural unit; (b) Dielectric constant curve; (c, d) absorption spectra; (e, f) Localized fields at different wavelengths


Figure (a) 3160 nm; (b) 916 nm;  (c) 710 nm. Distribution of electric field Ez component; (d, e) Upconverted light intensity generated by different signal light and pump light; (f) Upconversion light intensity generated under different signal light intensities

In response to the above issues, the research group proposed a method of using gap plasma mode to achieve mode field overlap and broadband enhancement. By designing hyperbolic metamaterials (HMMs) composed of Au ZnO multilayer structures with triangular pyramid shapes, the ultra wideband nonlinear frequency upconversion technology was theoretically verified for the first time in the 3-5 μ m mid infrared band. The gap plasma mode in HMMs multilayer structure excites high-order narrowband resonance at near-infrared pump light wavelength, while the slow light effect generated by dipole and hyperbolic dispersion achieves ultra wideband near-field enhancement at mid infrared wavelength. The symmetry breaking of the triangular structure localizes these resonance modes at the tip of the structure, which not only enhances the localized field in the dielectric material, but also achieves mode field overlap at different signal and pump wavelengths, significantly enhancing the nonlinear frequency conversion process. Thanks to the slow light effect, manipulating the geometry and materials of the basic units of metasurfaces can adjust the above modes, thereby achieving frequency conversion processes at specific wavelengths. The research results provide new ideas for the development of nonlinear frequency conversion technology based on metasurfaces, and provide technical support for the research of new mid infrared optoelectronic detection systems. It has important application value in the fields of mid infrared detection, imaging, sensing, and communication.

Source: Xi'an Institute of Optics and Fine Mechanics

Related Recommendations
  • The world's highest power industrial grade fiber laser is released in Tianjin

    On August 31st, Tianjin Kaipulin Optoelectronics Technology Co., Ltd. (hereinafter referred to as Kaipulin), a Tianjin Port Free Trade Zone enterprise, officially released the world's first 200000 watt ultra-high power industrial grade fiber laser, breaking the record for the highest power of industrial grade fiber lasers in the world and marking China's stable position in the international advanc...

    2024-09-02
    See translation
  • Han's Laser senior management resigns

    Just now, Han's Laser Technology Industry Group Co., Ltd. announced the resignation of senior management personnel. The board of directors recently received a written resignation report from Mr. Zhao Guanghui, the deputy director of the company's management and decision-making committee. Mr. Zhao Guanghui has applied to resign from his position as deputy director of the company's management and de...

    06-09
    See translation
  • The Japanese research team has manufactured a vertical deep ultraviolet emitting semiconductor laser device based on AlGaN, which is expected to be applied in fields such as laser processing

    Recently, a Japanese research team has developed a vertical deep ultraviolet emitting semiconductor laser device based on AlGaN, which is expected to be applied in laser processing, biotechnology, and medical fields.As is well known, ultraviolet (UV) is an electromagnetic wave with a wavelength range of 100 to 380nm. These wavelengths can be divided into three regions: UV-A (315-380 nm), UV-B (280...

    2023-10-23
    See translation
  • Sidel showcases EvoBLOW laser technology at the 2025 Gulf Food Manufacturing Exhibition

    At Gulfood Manufacturing 2025 held in Hall 3 of Dubai World Trade Center, Sidel showcased its EvoBLOW laser PET preform laser heating technology for the first time in the Middle East and Africa region.The system, shown earlier this year at drinktec, replaces traditional halogen ovens with precise laser sources. According to the company, the solution enables the production of lighter bottles while ...

    11-05
    See translation
  • Advancing Astronomy: Using Laser Guided Star Adaptive Optics to Obtain clearer celestial views

    Adaptive optics is defined as an advanced optical system used to correct the transmission medium between the subject and the image, providing users with clearer images. Adaptive optics helps to use a complex combination of deformable mirrors to correct images in real-time through distortion in the Earth's atmosphere. These images are of greater importance in many vertical industries such as health...

    2024-02-22
    See translation