English

A US research team has developed a new type of photonic memory computing device

1006
2024-10-24 11:36:03
See translation

Recently, a research team from the University of California, Santa Barbara has successfully developed a new type of photonic memory computing device that integrates non reciprocal magneto-optical technology. This device achieves high-speed, high-energy efficiency, and ultra-high durability photon computing by utilizing the non reciprocal phase shift phenomenon. The research findings, titled "Integrated non recurrent magneto optics with ultra high endurance for photonic in memory computing," were published in Nature Photonics.

Photon computing has become one of the important directions for the future development of artificial intelligence and machine learning due to its advantages of high speed and low energy consumption. However, the current photon processing architecture faces challenges such as slow storage array update speed, high energy consumption, and insufficient durability. The non reciprocal magneto-optical technology proposed by the research team has successfully solved these bottlenecks by integrating cerium doped yttrium iron garnet with silicon micro ring resonators. By utilizing the non reciprocal phase shift properties of this material, researchers have demonstrated fast programming (1 nanosecond), low energy consumption (143 femjoules per bit), and excellent durability (programmable 2.4 billion cycles) of photonic memory cells.

 


Figure a. Schematic diagram of computing architecture and unit devices; d. Schematic diagram of memory unit.


The core of this technology is to encode optical weights through the non reciprocal phase shift effect generated by magneto-optical materials in micro ring resonators. Unlike existing photon weights based on thermal or plasmonic dispersion effects, non reciprocal magneto-optical weights not only improve programming speed, but also significantly enhance the device's fatigue resistance and multi-level storage capability. The research team also pointed out that the photon computing platform using this new architecture is expected to provide higher computational efficiency for matrix vector multiplication (MVM) in artificial intelligence.

The photon memory unit demonstrated in this study can update weights at a very high programming speed with high-speed response and low energy consumption, greatly reducing the overall energy burden of the system. Especially in applications such as deep learning that require large-scale computing, this technology can significantly reduce the computational bottleneck of traditional electrical architectures through non-volatile, multi bit storage, further promoting the development of future computing architectures towards more efficient and green directions.

Based on the future development prospects of this technology, researchers believe that by further optimizing the integration of materials, such as utilizing spin orbit torque or spin torque transfer effects, it is possible to achieve higher switching efficiency. In addition, with the advancement of single-chip integration technology between cerium doped yttrium iron garnet and silicon photonic devices, this technology has enormous potential for future applications in fields such as photon computing and magnetic storage.

Source: Opticsky

Related Recommendations
  • Japan's Murata Machinery Launches a Punch and 4kW Fiber Laser Integrated System

    Recently, Murata Machinery USA, a representative Japanese manufacturer of machinery and CNC machine tools, announced the launch of the latest cutting-edge punch and fiber laser integrated equipment - MF3048HL. This integrated machine combines the advantages of punch operation and laser cutting technology, eliminating the need for separate settings or material transfer between machines.Muratec's pu...

    2023-09-01
    See translation
  • BLT launches a new BLT-S800 metal PBF 3D printer equipped with 20 lasers

    Bright Laser Technologies (BLT), a global leader in additive manufacturing headquartered in China, has launched a new BLT-S800 metal 3D printer with a super large construction volume (800 mm x 800 mm x 600 mm) and a 20 fiber laser configuration, which can shorten part delivery time and achieve rapid customer manufacturing.The BLT-S800 system supports titanium alloy, aluminum alloy, high-temperatur...

    2023-10-19
    See translation
  • Personnel changes at Optimax, a precision optical manufacturer

    On November 25th, Optimax, the largest precision optics manufacturer in the United States, announced the appointment of Joseph Spilman as CEO and Pete Kupinski as President. After developing a comprehensive succession plan, Optimax CEO Rick Plympton will retire along with President and Founder Mike Mandina.Mandina stepped down in 2021 and passed on the title of CEO to Spilman, strategically appo...

    2024-11-28
    See translation
  • 2026 SPIE Entrepreneurship Challenge Opens for Registration

    Applications are now open for the 2026 SPIE Startup Challenge. The annual entrepreneurial pitch competition is held by SPIE, the international society for optics and photonics, as part of SPIE Photonics West.In 2026, Photonics West will be held 17-22 January in San Francisco’s Moscone Center, with the SPIE Startup Challenge finals being held 20 January.The SPIE Startup Challenge is a competitive e...

    09-08
    See translation
  • Laser printing on fallen leaves can produce sensors for medical and laboratory use

    The manufacturing of sensors through 3D printing combines speed, design freedom, and the possibility of using waste as a substrate. In the circular economy model, various results have been achieved, and typically discarded residues are used as low-cost resources. A research team in Brazil has proposed a highly creative solution that involves printing electrochemical sensors on fallen leaves. The t...

    2024-05-16
    See translation