English

An efficient femtosecond pulse amplification technique for extracting the maximum stored energy in fiber laser amplifiers

1015
2024-11-13 11:55:15
See translation

The well-known journal Optica published a paper in November 2024 titled "Near complete extraction of maximum stored energy from large core fibers using coherent pulse stacking amplification of femtosecond pulses"The authors of the paper were the University of Michigan, Lawrence Berkeley National Laboratory, Peking University, and the German Institute of Synchrotron Radiation.

The specific technique is to use a cascaded "GTI" (Gire Tounois interferometer) method to synthesize 81 amplified pulses together in the time domain. The technical difficulty that needs to be overcome is to control the phase and amplitude of each pulse to achieve coherent synthesis. The core femtosecond light source is a 1 GHz repetition rate femtosecond fiber laser, developed by Professor Zhang Zhigang's group at the School of Electronics, Peking University.

The author of the paper has demonstrated using the aforementioned techniques that, with a continuous pump of 100 W and a repetition rate of 2 kHz, nearly 10 mJ of amplified pulse energy can be extracted, far exceeding the energy output of conventional large mode area fiber amplifiers, which can reach less than 1 mJ. The extraction efficiency is close to 90%.

This efficient time-domain pulse synthesis technique can greatly improve the efficiency of pulse synthesis and reduce the number of amplifiers used for spatial synthesis.

Although the repetition rate and pulse energy obtained from this experiment are not yet high, this technology demonstrates the potential to generate femtosecond strong laser pulses with Joule level pulse energy and repetition rates above 10 kHz. It may provide a light source for studying strong field physics and particle accelerators under extreme conditions, as well as for generating secondary radiation.

Figure 1 shows the efficiency of pulse energy extraction in a fiber amplifier independent of core diameter under nonlinear confinement. Figure 1 indicates that the pulse extraction efficiency can only approach 100% of the amplifier's stored energy when the pulse is broadened to 100 ns


Figure 2 shows a schematic diagram of a composite GTI cavity, where 81 incident laser pulses are coherently superimposed in four large loop cavities to form 9 pulses; Then coherently superimpose them into one pulse in four small cavities


Figure 3: Photo of the Composite GTI Chamber Experimental Device


Figure 4 shows the pulse waveform and spectrum of the coherent synthesized pulse with an energy of 3 mJ and a width of 313 fs

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • Michigan State University uses laser pulses to impact gold nanoparticles for crystal growth

    To make crystals suitable for use as optoelectronic materials, the key is to precisely control the crystallization, but this control is difficult.Producing lead halide perovskites, promising components for next-generation solar cells and photodetectors, has proven particularly challenging, with slow growth rates and uncontrolled nucleation being common issues.A project at Michigan State University...

    10-16
    See translation
  • Skylark Lasers receives a new round of investment to drive international business growth

    Skylark Lasers is a designer and manufacturer of single frequency diode pumped solid-state (DPSS) lasers, headquartered in Edinburgh, Scotland. Recently, the company has received a new round of financing worth millions of pounds to drive international expansion and advance its product development roadmap.Led by long-term key investment partners at Par Equity and Scottish Enterprise, the investment...

    10-11
    See translation
  • Short pulse lasers in the form of chips use the so-called mode coupling principle

    Nowadays, lasers that emit extremely short flashes can be found in many research laboratories, but they usually fill the entire room. Physicists have now successfully reduced this laser to the size of a computer chip. As they reported in the journal Science, their research can lay the foundation for extremely compact detectors.A team led by Qiushi Guo from the California Institute of Technology in...

    2023-11-10
    See translation
  • Personnel changes at Optimax, a precision optical manufacturer

    On November 25th, Optimax, the largest precision optics manufacturer in the United States, announced the appointment of Joseph Spilman as CEO and Pete Kupinski as President. After developing a comprehensive succession plan, Optimax CEO Rick Plympton will retire along with President and Founder Mike Mandina.Mandina stepped down in 2021 and passed on the title of CEO to Spilman, strategically appo...

    2024-11-28
    See translation
  • American scientists use light technology to control hypersonic jet engines

    According to the website "interesting engineering" on July 29th, a new study funded by the National Aeronautics and Space Administration (NASA) has revealed for the first time that the airflow in supersonic combustion jet engines can be controlled through optical sensors. This study was conducted by researchers from the School of Engineering and Applied Sciences at the University of Virginia.When ...

    2024-07-31
    See translation