English

IPG launches dual beam fiber laser for additive manufacturing applications

1570
2024-11-25 12:00:10
See translation

Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.
The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.


Based on its profound expertise in the field of high-power lasers, IPG has launched two new dual beam rack mounted lasers:
YLR-1000/3000-AMB series laser with 1kW core and 3kW ring combination;
YLR-2000/2000-AMB series laser with 2kW core and 2kW ring combination.
The all-new YLR-AMB series laser is specially designed for the additive manufacturing industry and has the following unique advantages:
Production efficiency leap: YLR-1000/3000-AMB laser has a construction rate of up to 324 cm ³/h and a density exceeding 99.9% in materials such as Ti-6Al-4V.


(Image source: IPG Photonics)

Multi functional processing capability: Combining single-mode and multi-mode outputs, the total power can reach 4 kilowatts, providing diverse processing options.
Heat distribution optimization: By independently adjusting the core and ring beams, more optimized heat distribution is achieved, promoting fast and high-quality construction.
Compact design: Adopting a slim 2U 19 inch (482.6mm) rack mounted design, it is not only easy to integrate, but also greatly saves space.
These innovative achievements have undergone rigorous testing by multiple top additive manufacturing OEM manufacturers, and preliminary results show excellent performance, significantly reduced costs, and greatly improved material utilization.


Trevor Ness, Senior Vice President of Global Sales and Business Development at IPG Photonics, emphasized that "YLR-AMB lasers have completely revolutionized the field of additive manufacturing. With high power, precise control, and application specific optimization, we help manufacturers reshape new standards for productivity and cost efficiency
The YLR-AMB series lasers perform well in high-performance applications such as aerospace components, medical equipment, and custom tools. Its key highlights include:
Material performance optimization: Specifically optimized for alloys such as Ti-6Al-4V (α - β titanium alloy) and CuCr1Zr (copper chromium zirconium).
Dynamic layer adjustment: Ensure the implementation of complex geometric shapes and perfect drape effects.


(Image source: IPG Photonics)

 


Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • Amplitude launches femtosecond lasers for industrial applications

    Recently, French femtosecond pulse and high peak power (PW class) laser manufacturer Amplitude announced that the company has launched a newly designed Satsuma X femtosecond laser, setting a new benchmark for industrial environments.This product was first announced in 2022 and is now available in a brand new design with proven durability and versatility. In pursuit of excellence and customer satis...

    2024-07-02
    See translation
  • Analysis of Optically Pumped Semiconductor Laser Technology for Promoting the Development of Life Sciences

    Optically Pumped Semiconductor Lasers technology has achieved great success in the market due to its various unique advantages, with over 100000 OPSL devices currently operating in the market. This article introduces the application and new developments of OPSL in the fields of flow cytometry and DNA sequencing.OPSL has the characteristics of flexible wavelength extension, adjustable power, compac...

    2024-02-01
    See translation
  • OpenLight raises $34 million for silicon photonics development

    OpenLight Photonics, the developer of photonic application-specific integrated circuit (PASIC) design tools established by software giant Synopsys, says it has raised $34 million in venture finance.The Santa Clara firm, whose process design kits (PDKs) support the integration of indium phosphide (InP) and silicon photonics components in complex layouts, says that the series A funding will see it r...

    08-27
    See translation
  • The creator of a computer that uses lasers to perform complex tasks at the speed of light has announced a breakthrough in high-performance computing

    LightSolver's new LPU100 system is powered by 100 lasers and can solve the most challenging problems through up to 120100 combinations.This computer was created by Dr. Ruti Ben Shlomi, CEO of LightSolver and Dr. Chen Tradonsky, CTO, a physicist at the Rehowatt Weizmann Institute for Science.It is not suitable for household use because its high computing power exceeds individual needs, but it is su...

    2024-03-21
    See translation
  • The scientific research team has proposed a modeless Raman fiber laser using a traditional resonant cavity structure

    The pump source, gain material, and resonant cavity are the three elements that make up a laser. Due to the selective effect of the resonant cavity on the lasing frequency, multi longitudinal mode operation is one of the characteristics of fiber lasers based on traditional resonant cavity structures, manifested as periodic beat peaks in the radio frequency (RF) spectrum and periodic fluctuations i...

    2023-08-15
    See translation