English

IPG launches dual beam fiber laser for additive manufacturing applications

1595
2024-11-25 12:00:10
See translation

Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.
The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.


Based on its profound expertise in the field of high-power lasers, IPG has launched two new dual beam rack mounted lasers:
YLR-1000/3000-AMB series laser with 1kW core and 3kW ring combination;
YLR-2000/2000-AMB series laser with 2kW core and 2kW ring combination.
The all-new YLR-AMB series laser is specially designed for the additive manufacturing industry and has the following unique advantages:
Production efficiency leap: YLR-1000/3000-AMB laser has a construction rate of up to 324 cm ³/h and a density exceeding 99.9% in materials such as Ti-6Al-4V.


(Image source: IPG Photonics)

Multi functional processing capability: Combining single-mode and multi-mode outputs, the total power can reach 4 kilowatts, providing diverse processing options.
Heat distribution optimization: By independently adjusting the core and ring beams, more optimized heat distribution is achieved, promoting fast and high-quality construction.
Compact design: Adopting a slim 2U 19 inch (482.6mm) rack mounted design, it is not only easy to integrate, but also greatly saves space.
These innovative achievements have undergone rigorous testing by multiple top additive manufacturing OEM manufacturers, and preliminary results show excellent performance, significantly reduced costs, and greatly improved material utilization.


Trevor Ness, Senior Vice President of Global Sales and Business Development at IPG Photonics, emphasized that "YLR-AMB lasers have completely revolutionized the field of additive manufacturing. With high power, precise control, and application specific optimization, we help manufacturers reshape new standards for productivity and cost efficiency
The YLR-AMB series lasers perform well in high-performance applications such as aerospace components, medical equipment, and custom tools. Its key highlights include:
Material performance optimization: Specifically optimized for alloys such as Ti-6Al-4V (α - β titanium alloy) and CuCr1Zr (copper chromium zirconium).
Dynamic layer adjustment: Ensure the implementation of complex geometric shapes and perfect drape effects.


(Image source: IPG Photonics)

 


Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the research of interferometer wavefront calibration methods

    Recently, the research team of the High end Optoelectronic Equipment Department at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of wavefront calibration methods for interferometer testing. The relevant research results were published in Optics Express under the title of "High precision wavefront correction method ininterometer tes...

    2024-07-23
    See translation
  • Tower Semiconductor is preparing to add laser integrated PIC for Scintil

    Grenoble stated that in the context of growing demand driven by artificial intelligence and 5G, "key" milestones have strengthened its supply chain.Scantil Photonics, a subsidiary of CEA Leti that focuses on silicon photonics, has stated that its integrated laser design is now being produced by Tower Semiconductor, a wafer foundry partner.This method describes this development as a "crucial step f...

    2024-02-29
    See translation
  • Shanghai Optics and Machinery Institute has made progress in femtosecond fiber lasers based on twisted Sagnac interferometer mode locking

    Recently, the research team of the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a torsional Sagnac interferometer and applied it to the fiber laser system, realizing mode locking self starting and pulse shaping. The relevant research achievements were published in the Journal of Lightwave Technology u...

    2024-04-22
    See translation
  • High sensitivity visualization of ultrafast carrier diffusion using a wide field holographic microscope

    A sketch of the imaging and holographic parts of a transient holographic microscope, including a pulse sequence, to illustrate the signal modulation method. By imaging the pinhole array at the sample position, a diffraction limited excitation spot array can be created, allowing for the simultaneous collection of transient data around 100 excitation spots.Femtosecond transient microscopy is an impo...

    2023-12-25
    See translation
  • Seyond plans to land on the Hong Kong Stock Exchange in De SPAC mode

    Recently, TechStar Acquisition Corporation (07855. HK), a special purpose acquisition company, announced that Seyond, the successor company of the special purpose acquisition transaction, has submitted a new listing application. Seyond plans to land on the Hong Kong Stock Exchange under the De SPAC model. This means that Seyond is only one step away from going public through a backdoor listing. If...

    02-14
    See translation