English

The team of researcher Wei Chaoyang of Shanghai Optical Machinery Institute has realized the manufacture of fused quartz components with high resistance to UV laser damage

6
2023-09-11 14:40:05
See translation

Recently, a team led by researcher Zhaoyang Wei of the Precision Optics Manufacturing and Testing Center of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has realized the manufacture of fused quartz components with high resistance to UV laser damage based on the defect characterization and removal process of CO2 laser. The research is published in Light: Advanced Manufacturing.

The problem of UV laser induced damage of fused quartz elements seriously restricts the development of high power laser systems. Due to the inevitable processing defects in the current contact polishing process, and it is difficult to be completely removed by post-processing, the service performance and life of fused quartz components are greatly reduced.

The research team proposed a laser chromatography ablation method to characterize subsurface defects based on microsecond pulsed laser low stress uniform ablation technology, and coupled it to the rapid material removal process to achieve complete removal of subsurface defects in the grinding stage. After that, the CO2 laser laser full link flexible machining of fused quartz components is realized by using laser conformal cleaning method to clean the redeposited contaminants on the ablative surface, and using laser melting polishing to smooth the ablative trajectory.

Compared with the traditional process, the CO2 laser processing link can effectively inhibit the introduction of machining defects and realize the preparation of fused quartz components with higher damage threshold. The laser-based defect characterization and removal method proposed in this study provides a new tool for the study of subsurface defects and the formulation of suppression strategies, and also provides a new idea for the low-defect machining of fused quartz components.

This work was supported by the National Key Research and Development Program, Shanghai Sailing Program, National Natural Science Youth Foundation, Shanghai Natural Science Foundation, Astronomy Joint Foundation and Youth Innovation Promotion Association of Chinese Academy of Sciences.

Figure 1 (a) Traditional process link; (b)CO2 laser processing link; (c) Three-dimensional full aperture subsurface defect characterization method

FIG. 2 Comparison of damage properties between conventional and laser-based samples: (a)1-on-1 damage probability (355nm, 8.3ns); (b) Typical damage morphology

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Related Recommendations
  • The Innovation Road of Laser Welding Automation Production Line for New Energy Vehicle Motor stators

    With the increasing global attention to environmental protection and sustainability, new energy vehicles have become an important trend in the automotive industry. In this context, the production method of the core component of new energy vehicles - the motor stator - has also undergone profound changes. Welding, as a key manufacturing process, has brought disruptive innovation to the manufacturin...

    02-28
    See translation
  • Researchers have developed the world's smallest silicon chip quantum photodetector

    Researchers at the University of Bristol have made significant breakthroughs in expanding quantum technology by integrating the world's smallest quantum photodetector onto silicon chips. The paper "A Bi CMOS Electron Photon Integrated Circuit Quantum Photodetector" was published in Science Advances.In the 1960s, scientists and engineers were able to miniaturize transistors onto inexpensive microch...

    05-21
    See translation
  • Huashu High tech launches a large format 12 laser metal 3D printer at TCT Asia

    Chinese industrial 3D printer manufacturer Huashu High tech has launched the FS811M metal powder bed fusion series platform. The FS811M series has a construction volume of 840 x 840 x 960 millimeters and can be equipped with powerful 6, 8, 10, or 12 x 500 watt fiber lasers."As the latest member of the Huashu High tech Metal 3D printer product portfolio, FS811M originates from our joint innovation ...

    05-13
    See translation
  • Micro active vortex laser

    Recently, Dong Yibo, from the Photonic Chip Research Institute of Shanghai University of Technology, published his research findings titled "Nanoprinted Diffractive Layer Integrated Vertical Cavity Surface Emitting Vortex Lasers with Scalable Topological Charge" as the first author in the internationally renowned journal Nano Letters.This achievement was jointly completed by the team of academicia...

    2023-10-24
    See translation
  • Tongkuai will participate in the laser fusion energy research program

    The US Department of Energy recently allocated $42 million to support the development of laser fusion technology and designated three new research and innovation centers. This strategic investment aims to promote laser based nuclear fusion to play an important role as a clean and sustainable energy source in the future. Trumpf is one of the main participants known for its laser expertise and activ...

    02-01
    See translation