English

Medical implant manufacturers have announced the launch of ultra-short pulse lasers for cutting applications

76
2023-09-12 13:59:39
See translation

Norman Noble, the world's leading contract manufacturer of next-generation medical implants, today announced the launch of the Noble STEALTH HP, an ultrashort pulse laser for the fabrication of innovative medical devices and implants.

It is reported that the laser is mainly equipped with a high-power laser cutting system, which can achieve high-quality cutting results without heat affected zone (HAZ).

Dan Stefano, Vice President of Manufacturing at Norman Noble, said: "We are excited to announce the launch of our STEALTH HP laser cutting technology. This state-of-the-art laser cutting process provides the ability to cut thick wall Nitinol medical devices without heat affected zones, while reducing the need for expensive secondary operations.

This technology, coupled with our fully automated/proven processes, continues to position Norman Noble as a leading contract manufacturer for the production of medical devices and implants."

The Noble STEALTH HP is an ultrashort pulsed laser that reduces or eliminates costly deburring and post-processing steps because it can cut without a heat-affected zone. These elements improve the quality and yield of medical devices. Non-thermal lasers make it possible to process the next generation of vascular and orthopaedic implants that would otherwise be impossible to produce.

About Norman Noble

Founded 75 years ago, Norman Noble is a family-owned and operated company that provides state-of-the-art processes for ultra-precision micromachining of medical implants.

The company is known for its exceptional ability to produce nitinoyl implants and achieve miniature precision that most manufacturers cannot achieve. Norman Noble is a supplier to most of the large Oems and well-known brands in the medical device industry.

Norman Noble manufactures medical devices and implants to customer specifications, in compliance with FDA regulations and ISO 13485. State-of-the-art processes include non-thermal laser processing, laser welding, Swiss turning and milling, conventional and wire EDM, high-speed 7-axis profile milling, electropolishing, Nitinol shape setting, and clean room assembly and packaging. Rapid development prototyping services are available in independent and fully dedicated process development centers.

Source: OFweek

Related Recommendations
  • SpaceX will sell satellite lasers to competitors that can accelerate space communication

    SpaceX President Gwynne Shotwell stated at a meeting on Tuesday that the company has started selling satellite lasers for fast space communication to other satellite companies.SpaceX's thousands of Starlink satellites in low Earth orbit use inter satellite laser links to transmit data to each other in space at the speed of light, so that the network can provide more extensive Internet coverage wo...

    2024-05-10
    See translation
  • Ecken develops a new type of iron silicon powder for 3D printing of motors

    Through the SOMA project funded by the European Union, organic silicon material expert Aiken has collaborated with research partners and clients to develop a new specialized iron silicon powder that can more efficiently 3D print motor components.Yesterday's electric motor was usually made by cutting and shaping parts from a metal plate. 3D printing can fundamentally improve efficiency and...

    2024-01-20
    See translation
  • Switzerland's top 100 sales drop to 330.9 million Swiss francs in the first half of the year

    Recently, Swiss company Bystronic disclosed its financial performance for the first half of 2024.The financial report shows that the market situation for the Swiss Super 100 in the first half of 2024 remains very tense. Customers in various end markets are unable to fully utilize their production capacity, and operations in all regions are relatively cautious.Despite Swiss supercar actively reduci...

    2024-07-24
    See translation
  • Redefining the Future of Sensing: In depth Study of Novel Plasma Waveguide Structures

    Imagine in such a world, the detection of trace substances is not only fast, but also incredibly accurate, indicating a new era of technological progress in health, safety, and environmental monitoring. Due to pioneering research on plasma waveguide structures, this vision is becoming increasingly realistic, aimed at enhancing refractive index sensing and spectral filtering. This innovative method...

    2024-03-04
    See translation
  • Developing a concentration independent pressure sensing method for high-temperature combustion diagnosis

    Recently, a research group led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences developed a concentration independent pressure sensing method based on two-color laser absorption spectrum for high-temperature combustion diagnosis.The research findings are published in Optics Letters.Aircraft engines are developing towards high-t...

    2024-03-08
    See translation