Nederlands

Cambridge University researchers use lasers to "heat and strike" 3D printed steel

97
2023-11-03 15:05:19
Bekijk vertaling

According to the University of Cambridge, researchers have developed a new method for 3D printing metal, which can help reduce costs and more effectively utilize resources. This method, developed by a research team led by the University of Cambridge, allows structural modifications to be "programmed" into metal alloys during 3D printing - fine-tuning their performance without the need for thousands of years of "heating and tapping" processes.

The new 3D printing method combines the best quality of two worlds: 3D printing makes complex shapes possible, and traditional methods allow for the engineering design capabilities of metal structures and performance. The research results are published in the journal Nature Communications.

3D printing has broad prospects, but it still has not been widely used in industry, mainly due to high production costs, "said Dr. Matteo Seita of the Engineering Department at the University of Cambridge, who led the research. One of the main drivers of these costs is the amount of adjustment required for materials after production.

Since the Bronze Age, metal parts have been made through the process of heating and beating. This method uses a hammer to harden the material and soften it through fire, allowing manufacturers to shape the metal into the desired shape while endowing it with physical properties such as flexibility or strength.

The reason why heating and beating are so effective is because they change the internal structure of the material, which can control its performance, "Seita said. That's why it's still in use thousands of years later.

One of the main drawbacks of current 3D printing technology is the inability to control the internal structure in the same way, which is why so many post production changes are needed. We are trying to come up with some methods to restore some structural engineering capabilities without the need for heating and tapping, which in turn will help reduce costs, "Seita said. If you can control the metal properties you want, you can take advantage of the green aspect of 3D printing.

Seita has collaborated with colleagues from Singapore, Switzerland, Finland, and Australia to develop a new 3D printed metal "formula" that can highly control the internal structure of materials when they are melted by laser.

By controlling the way the material solidifies after melting and the heat generated during the process, researchers can program the characteristics of the final material. Usually, metals are designed to be sturdy and tough, so they can be safely used for structural applications. 3D printed metal is inherently sturdy, but it is usually also very brittle.

The strategy developed by researchers triggers controlled reconfiguration of microstructure by placing 3D printed metal components in a furnace at relatively low temperatures, thereby fully controlling strength and toughness. Their method uses traditional laser based 3D printing technology, but has made some minor adjustments to the process.

We found that lasers can be used as' micro hammers' to harden metals during the 3D printing process, "Seita said. However, using the same laser to melt the metal a second time will relax the structure of the metal, allowing for structural reconfiguration when the parts are placed in the furnace.

Their 3D printed steel has undergone theoretical design and experimental verification, made of alternating regions of sturdy and tough materials, making its performance comparable to that of steel made by heating and beating.

We believe that this method can help reduce the cost of metal 3D printing, thereby improving the sustainability of the metal manufacturing industry, "Seita said. In the near future, we hope to bypass the low-temperature treatment in the furnace and further reduce the steps required before using 3D printed parts in engineering applications.

The team includes researchers from Nanyang University of Technology, the Science and Technology Research Bureau, the Paul Scherrer Institute, the VTT Technology Research Center in Finland, and the Australian Nuclear Science and Technology Organization. Matteo Seita is a researcher at St. John's College, Cambridge University.

Source: Laser Network

Gerelateerde aanbevelingen
  • Progress made by the Precision Measurement Institute in Thorium Ion Trapping Research

    Recently, the Cold Molecular Ion Research Group of the Institute of Precision Measurement has made significant progress in the loading, trapping, and recognition of thorium ions. The related research results have been published as cover and selected articles in the international physics journal Journal of Applied Physics, titled "Loading and identifying variable charged thorium ions in a linear io...

    2024-06-21
    Bekijk vertaling
  • Revealing the essence of optical vortices: a step towards understanding the interaction between light and matter

    In a groundbreaking scientific study published in Volume 13 of the Scientific Report, researchers reported on the results of Young's double slit interference experiment using oscillating vortex radiation under a photon counting system. The experiment involves using a spiral oscillator to emit second harmonic radiation in the ultraviolet range. Using an ultra narrow bandpass filter in the low curre...

    2023-12-29
    Bekijk vertaling
  • The rare decay of the Higgs boson may point to physics beyond the standard model

    Particle physicists have detected for the first time a new decay of the Higgs boson, revealing subtle differences predicted by the standard model and potentially pointing to new physics beyond it. The research results are published in the journal Physical Review Letters.The theoretically predicted Higgs boson since the 1960s was finally discovered in the European CERN laboratory in 2012. As a quan...

    2024-01-26
    Bekijk vertaling
  • Nanjing University of Science and Technology has made new progress in the field of programmable lensless holographic cameras

    Recently, Professor Chen Qian and Professor Zuo Chao's research group from the School of Electronic Engineering and Optoelectronic Technology at Nanjing University of Science and Technology proposed a minimalist optical imaging method based on programmable masks - programmable Fresnel zone aperture lensless imaging technology. The related achievement, titled "Lensless Imaging with a Programmable F...

    04-14
    Bekijk vertaling
  • New type of "dynamic static dual sensing" charge coupled phototransistor

    With the development of cutting-edge technologies such as automatic guidance and embodied intelligence, machine vision has put forward higher requirements for image acquisition, requiring precise recording of static images and the ability to sensitively capture dynamic changes in the scene. The existing dynamic and active pixel sensor technology integrates two functions: dynamic event detection an...

    2 dagen geleden
    Bekijk vertaling