Nederlands

Creating Laser Sensors with Soap Bubbles: Discovery of Game Changing Rules

262
2023-11-20 14:22:03
Bekijk vertaling

Scientists from the University of Ljubljana in Slovenia have made groundbreaking discoveries and discovered a new innovative application of soap bubbles. By transforming these seemingly simple entities into laser sensors, they unleash the potential to detect electric fields and pressures. This extraordinary development has opened the door to various possibilities.

Researchers at the University of Ljubljana use regular hand sanitizers or bubble mixtures suitable for children to create bubble lasers. By adding a small amount of fluorescent dye to the mixture, they can generate laser light from within the bubbles. Unlike traditional lasers that rely on mirrors for amplification, the internal volume of bubbles becomes a decisive factor in this new laser technology. This unique characteristic provides the necessary space for light to reflect back and forth, which is a key component of lasers.

The addition of fluorescent dyes enables bubbles to be used as amplifiers of light. When illuminated, the dye emits light, forming the basic components required for laser generation. Researchers use optical fibers and focusing lenses to guide external light onto bubbles. This triggers the bubble to generate its own laser.

An important aspect of this breakthrough is the extraordinary sensitivity of bubble lasers. They can detect pressure changes as small as 0.001% of atmospheric pressure. Even without thunderstorms generating electricity, they can sense the electric field in the atmosphere on clear days.

The application of this technology is extensive and exciting. The team creatively combined "micro ring lasers" together, opening up new possibilities for future development. The results of this discovery have sparked the interest and enthusiasm of experts in the field, who believe that it may lead to the emergence of various new applications.

FAQ:
Q: How do researchers convert soap bubbles into laser sensors?
Answer: Researchers added a small amount of fluorescent dye to ordinary hand sanitizers or bubble mixtures suitable for children, creating a medium for laser generation.

Q: How does a bubble laser work?
Answer: The internal volume of the bubble, coupled with the addition of fluorescent dyes, allows the bubble to serve as an amplifier of light. External light triggers bubbles to generate their own laser.

Q: What are the unique features of these bubble lasers?
Answer: Bubble lasers have unprecedented sensitivity and can detect pressure changes as low as 0.001% of atmospheric pressure. Even on sunny days, they can sense electric fields in the atmosphere without generating electricity from thunderstorms.

Q: What are the potential applications of bubble lasers?
Answer: This discovery opens the door to a wide range of new applications that need to be explored and developed.

Source: Laser Network

Gerelateerde aanbevelingen
  • Optical Drive Magnetic Control: A Breakthrough in Memory Technology

    A recent study conducted by the Hebrew University suggests an undiscovered relationship between magnetism and light. This discovery may pave the way for extremely fast optical storage technology and creative optical magnetic sensor technology.It is expected that this discovery will completely change the way equipment is manufactured and data is stored in a range of fields.Amir Capua, Professor and...

    2024-01-06
    Bekijk vertaling
  • University of Science and Technology of China realizes quantum elliptical polarization imaging

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the research of quantum elliptical polarization imaging. The research group of Professor Shi Baosen and Associate Professor Zhou Zhiyuan combined high-quality polarization entangled light sources with classical polarization imaging technology to observe the bir...

    04-14
    Bekijk vertaling
  • Beyond Limits: The Amazing Power of Water in Laser Development

    Water helps to generate ultra continuous white lasers with an extremely wide wavelength range.Researchers have made significant progress in creating ultra wideband white laser sources, which have a wide wavelength range from ultraviolet to far-infrared. These advanced lasers are used in various fields, including imaging, femtosecond chemistry, telecommunications, laser spectroscopy, sensing, and u...

    2024-02-26
    Bekijk vertaling
  • Researchers use desktop laser systems to generate ultrafast electrons

    In a mass particle accelerator, subatomic particles are accelerated to ultrahigh speeds that are comparable to the speed of light towards the target surface. The accelerated collision of subatomic particles produces unique interactions, enabling scientists to gain a deeper understanding of the fundamental properties of matter.Traditionally, laser based particle accelerators require expensive laser...

    2024-03-14
    Bekijk vertaling
  • The scientific research team of Beijing University of Technology opens up a new field of on-chip optics research

    Zhang Jun, an academician team of Beijing University of Technology, pioneered the on chip spectral multiplexing perception architecture, and independently developed the first 100 channel megapixel hyperspectral real-time imaging device in the world, creating the world's highest light energy utilization rate. On November 7, the team's relevant achievements were published in the journal Nature, and ...

    2024-11-08
    Bekijk vertaling