Nederlands

A New RIEGL Laser Scanning Solution for Drone Data Acquisition

194
2023-12-01 15:01:23
Bekijk vertaling

With its latest developments, RIEGL once again emphasizes its pioneering role as a supplier of high-performance LiDAR sensors and integrated systems with UAS. The continuous trend in the drone system industry requires measurement level laser scanners that match the integrated performance of compact multi rotor and high-speed vertical takeoff and landing or fixed wing drone platforms.

RIEGL has recognized this trend and adjusted its product range in this direction. The typical accuracy/precision and multi-target capability of RIEGL, combined with excellent measurement range, wide field of view, extremely high laser pulse repetition rate, and fastest production line speed, are the foundation of user success. These key attributes allow the drone system to fly at the maximum possible operating altitude, thereby achieving the highest possible area coverage. The on-site time and collection flight time are greatly reduced, thereby reducing overall costs and improving the safety of drone system applications. At the same time, more accurate point cloud data can be obtained and comprehensive coverage can be achieved. This increases the flexibility of the platform used for the project, and most importantly, improves efficiency.

The new RIEGL VUX-18024 provides a wide field of view of 75 degrees and an extremely high pulse repetition rate of up to 2.4 MHz. These features, combined with a scanning speed of up to 800 lines per second, make it highly suitable for high-speed measurement tasks and applications that require optimal line and point distribution. Typical applications include surveying and monitoring of key infrastructure such as power lines, rails, pipelines, and runways. The RIEGL VUX-18024 provides mechanical and electrical interfaces for IMU/GNSS integration, as well as up to 5 external cameras, reflecting the overall dimensions of the VUX-160. To achieve smooth and direct data storage, an internal SSD memory with 2 TByte storage capacity and a removable CFast storage card can be used. This sensor further supplements RIEGL's mature VUX-12023, VUX-160 type 23, and VUX-24024 series, and can be used as an independent sensor or in various fully integrated laser scanning system configurations, equipped with IMU/GNSS systems and optional cameras.

RIEGL VUX-24024 is a new enhanced version of the mature RIEGL VUX-240, which now offers higher pulse repetition rates and faster scanning speeds to further improve on-site performance and workflow efficiency. This sensor has a wide field of view of 75 degrees and an extremely fast data acquisition rate of up to 2.4 MHz, achieving a measurement rate of up to 2 million measurements per second, making it very suitable for high-density applications such as power line, track, and pipeline detection. Its scanning speed of up to 600 lines per second not only allows for operations on fast flying drones, but also allows for the operation of small helicopters, rotorcraft, and other manned aircraft at altitudes of up to 4700 feet.

The mechanical and electrical interfaces allow for optional integration of IMU/GNSS systems and up to 4 cameras. The data can be stored in the internal 2 TByte SSD memory, or can be stored using a removable CFAST storage card to transfer the data to a PC.
In addition to independent versions of the RIEGL miniVUX-1UAV and miniVUX-3UAV LiDAR sensors, RIEGL also offers system solutions for IMU/GNSS systems and cameras.

Now, RIEGL provides RiLOC, an integrated component used to supplement RIEGL's kinematic LiDAR system for locating and orienting LiDAR data in a reference coordinate system. This fully integrated subsystem has a compact and lightweight appearance, directly connected to the casing of the miniVUX-1UAV or miniVUX-3UAV, and the total weight of the system is only 1.75 kg. RiLOC itself consists of one or two GNSS receivers, an inertial measurement unit, and a data acquisition controller with accompanying software. It utilizes tight coupling to handle inertia, GNSS, and LiDAR data, providing a new entry-level choice for RIEGL's cost-effective UAS LiDAR system solution.

Source: Laser Net

Gerelateerde aanbevelingen
  • Ultra fast plasma for all optical switches and pulse lasers

    Plasmology plays a crucial role in advancing nanophotonics, as plasma structures exhibit a wide range of physical properties that benefit from local and enhanced light matter interactions. These characteristics are utilized in many applications, such as surface enhanced Raman scattering spectroscopy, sensors, and nanolasers.In addition to these applications, the ultrafast optical response of plasm...

    2024-03-26
    Bekijk vertaling
  • Petrobras will use laser beams to measure wind speed and direction

    Petrobras announced last week that it plans to use laser beams to measure wind speed and direction. The idea is that these data will be used to improve the operation of the wind turbines maintained by this state-owned company in North Rio Grande do.The total investment of the 2.0 version of this device reaches R $11.3 million, known as the offshore wind assessment remote buoy.This technology can a...

    2023-10-24
    Bekijk vertaling
  • NASA plans to use lasers to measure the impact of exhaust gases on the lunar surface during landing, in order to plan lunar landings more effectively

    Recently, NASA's official website showed that a research team at the University of Central Florida has tested an instrument called Ejecta STORM, which aims to measure the size and velocity of surface particles generated by exhaust gases from rocket powered landers on the moon or Mars.According to NASA, when a spacecraft lands on the moon or Mars, rocket exhaust plumes can produce efflorescent ejec...

    2023-10-31
    Bekijk vertaling
  • Research has shown that patterns on crystals can double the optical sensitivity of photodetectors

    Scientists from the Institute of Automation and Control Process at the Far East Branch of the Russian Academy of Sciences described the changes on the surface of monocrystalline silicon during laser processing. The author of this study placed the crystal in a methanol solution and applied a laser pulse lasting one thousandth of a second to the sample, with a pulse count ranging from five to fifty ...

    2024-04-01
    Bekijk vertaling
  • Uncovering the Secrets of Nature: A New Generation of X-ray Lasers Reveals the Mystery of Atoms

    As a breakthrough leap in scientific exploration, the new generation of powerful X-ray lasers is now targeting the fastest and most basic processes in nature. Their mission: to uncover the complex atomic arrangement that drives these phenomena, providing unprecedented insights into chemical reactions, electronic behavior in materials, and the mysteries of the natural world.Unlocking the precise me...

    2023-09-25
    Bekijk vertaling