Nederlands

Hyperspectral imaging technology: a comprehensive guide from principles to applications

127
2024-04-16 17:35:15
Bekijk vertaling

Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.

Introduction to hyperspectral imaging
Hyperspectral imaging is a technique that utilizes spectral information to obtain the spectrum of each pixel in an image. Compared to traditional imaging systems, hyperspectral imaging can provide more detailed information on object and surface features. By analyzing the unique spectral characteristics of objects and materials, it is possible to identify and quantify them.

Spectral imaging systems can capture electromagnetic spectra ranging from visible light to infrared, providing rich spectral data. This technology is widely used in fields such as food quality and safety, waste classification and recycling, and drug production control.

2. Working principle
Hyperspectral imaging utilizes an imaging spectrometer (also known as a hyperspectral camera) to collect light from a scene and decompose it into various wavelengths or spectral bands. Through this method, a two-dimensional image of the scene can be obtained and the spectral information of each pixel can be recorded. In the final hyperspectral image, each pixel corresponds to a unique spectrum, similar to a fingerprint.

This unique spectrum can be used to identify and quantify objects and materials in the scene. Due to the different reactions of different materials to light, their spectral characteristics are also different. Therefore, object recognition and classification can be achieved through spectra.

3. Information provided
The hyperspectral imaging system provides rich spatial and spectral information, which can be used to solve the problems of "what" and "where". Spectral information allows for recognition and classification of objects, while spatial information provides data on object distribution and regional separation.

Compared to traditional RGB cameras, hyperspectral imaging can provide more detailed and rich information. By analyzing thousands or even hundreds of thousands of spectra, large-scale hyperspectral data cubes containing position, wavelength, and time related information can be obtained, enabling detailed characterization of objects.

4. Application field
Hyperspectral imaging technology has a wide range of applications in various fields:
-Environmental monitoring: used to monitor land use, vegetation health, and water quality changes, as well as detect early signs of ecological degradation.
-Mineral exploration: used to create mineral deposit maps, detect mineral composition and grade.
-Quality control: can be used for non-destructive testing and grading of food, as well as detection of pollutants and defects in industrial products.
-Waste management: can be used to separate various materials and increase the value of recycled materials.
-Agriculture: used to evaluate crop health and yield, monitor soil moisture and nutrient content.
-Military surveillance: used to detect and identify hazardous materials.

epilogue
Hyperspectral imaging technology, as a powerful tool, plays an important role in scientific research, industrial production, and environmental monitoring. With the continuous advancement of technology and the expansion of application scenarios, it is believed that hyperspectral imaging will play an increasingly important role in the future and make greater contributions to the development of human society.

Source: Sohu

Gerelateerde aanbevelingen
  • SuperLight Launches "First" Portable Broadband Laser

    Supercontinuum spectrum laser developer SuperLight Photonics has launched the so-called "first revolutionary portable broadband laser" - SLP-1000. Its wide spectral output provides a light source for industrial and medical imaging applications as well as spectroscopy.Supercontinuum spectrum lasers, also known as broadband lasers, provide high bandwidth while maintaining high coherence and low nois...

    2023-11-02
    Bekijk vertaling
  • Leading listed laser company Novanta moves to new location

    Recently, Novanta, a pioneer in advanced laser and optical subsystems for medical and industrial applications, announced that the company will relocate from its original official address (Emery Court in Stockport, UK) to a state-of-the-art 70000 square foot factory facility in nearby Orion Business Park. Its business capabilities will also be expanded fourfold to serve an expanding team and custom...

    2024-08-08
    Bekijk vertaling
  • Teledyne Technologies acquires a portion of its optoelectronic business

    Recently, Teledyne Technologies announced that it has reached an agreement to acquire a portion of Excelitas Technologies' aerospace and defense electronics business for $710 million in cash.This acquisition includes the optical systems business under the Qioptiq brand headquartered in North Wales, UK, as well as the Advanced Electronic Systems (AES) business headquartered in the United States.It ...

    2024-11-12
    Bekijk vertaling
  • Future oriented strategic technology: integrated manufacturing of large composite materials with additive and subtractive materials and its key elements

    Thermowood has developed a large-scale additive and subtractive material manufacturing equipment, LSAM, and successfully printed tooling molds on site that can be used for aerospace composite material forming, demonstrating its low-cost and rapid response to composite material manufacturing capabilities to the public.As a large-scale component additive manufacturer, Thermowood has developed a near...

    2024-04-19
    Bekijk vertaling
  • The technological iteration route of automotive millimeter wave radar chips

    The rapid development of intelligent cars and autonomous driving technology has made millimeter wave radar inconspicuous, and the widespread application of millimeter wave radar has driven the technological evolution of MMIC.From the expensive gallium arsenide (GaAs) process in the early days to the mainstream CMOS and SiGe processes today, and then to the future promising FD-SOI process, the cont...

    2024-12-07
    Bekijk vertaling