Nederlands

The LANL Laboratory in the United States has achieved a light source that generates a circularly polarized single photon stream using a quantum light emitter

106
2023-09-02 14:48:48
Bekijk vertaling

Los Alamos National Laboratory (LANL) has developed a method for a quantum light emitter that stacks two different atomically thin materials together to achieve a light source that produces a stream of circularly polarized single photons. These light sources can in turn be used for a variety of quantum information and communication applications.

According to Los Alamos researcher Han Htoon, the work shows that single-layer semiconductors can emit circularly polarized light without the need for an external magnetic field.

"This effect has previously only been possible with high magnetic fields generated by bulky superconducting magnets, by coupling quantum emitters to very complex nanoscale photonic structures, or by injecting spin-polarized charge carriers into the quantum emitters." Our proximity effect approach has the advantage of low manufacturing costs and high reliability."

Polarization states are a means of encoding photons, so this result is an important step in the direction of quantum cryptography, or quantum communication. "With a light source that produces a single photon stream and introduces polarization, we basically have two devices in one."

The team stacked a single-molecule thick layer of tungsten diselenide semiconductors on top of a thicker layer of magnetic nickel-phosphorus trisulfide semiconductors. Using an atomic force microscope, the team created a series of nanoscale indentations on a thin layer of material.

When the laser is focused on the pile of material, the 400 nanometer-diameter indentation created by the atom microscope tool has two effects. First, the indentation forms a "well" or "depression" in the potential energy landscape. The electrons of the tungsten diselenide monolayer fall in the depression. This stimulates the emission of a single photon from the trap.

The nanoindentation also destroys the typical magnetic properties of the underlying nickel-phosphorus trisulfide crystals, creating a local magnetic moment pointing outward from the material. This magnetic moment causes the emitted photon to be circularly polarized. To experimentally confirm this mechanism, the team first conducted high-magnetic field spectroscopy experiments in collaboration with the Pulse Field Facility at the Los Alamos National High Magnetic Field Laboratory. The team then worked with the University of Basel in Switzerland to measure the tiny magnetic field of the local magnetic moment.

The team is now exploring ways to modulate the degree of circular polarization of single photons through electronic or microwave stimulation. This ability would provide a way to encode quantum information into a stream of photons. Further coupling of the photon stream to the waveguide will provide the photonic circuit so that the photons propagate in one direction. Such circuits will become a fundamental component of an ultra-secure quantum Internet.

Source: OFweek

Gerelateerde aanbevelingen
  • Trumpf announces four personnel changes

    Recently, global laser giant Germany's Trumpf announced four personnel changes, namely Claudio Santopietro as the head of intelligent factory consulting and automation, Kevin Cuseo as the head of software sales, Julian Schorpp as the product manager for automatic bending products, and Adam Simons as the head of additive manufacturing for Trumpf North America.According to relevant information, Clau...

    2024-11-26
    Bekijk vertaling
  • Tesla Intelligent Robot Vacuum Laser AI200 has a maximum operating time of 130 minutes

    In most cases, devices that are part of so-called smart homes have become a part of our lives. These appliances have a significant impact on our comfort level and contribute to daily household chores, such as cleaning. There are many products in the market that have paved the way in this regard, but the amount we usually have to pay for them effectively prevents us from purchasing.Of course, we ca...

    2023-11-10
    Bekijk vertaling
  • New type of femtosecond laser: used for broadband terahertz generation and nonlinear wafer detection

    Recently, HüBNER Photonics, the leading manufacturer of high-performance lasers, has launched the latest member of the VALO femtosecond series - VALO Tidal. This laser not only represents a major leap in the fields of imaging, detection, and analysis, but also demonstrates the infinite possibilities of laser technology with its outstanding performance.The VALO Tidal femtosecond laser typically sho...

    2024-06-26
    Bekijk vertaling
  • Coherent lasers will help expand the scale of fusion tokamaks

    Coherent company's excimer lasers can be more widely used in fusion reactor applications, after the US based photonics giant signed a "letter of intent" with Japan's Faraday 1867 Holdings.Faraday 1867, headquartered in Kanagawa Prefecture, is said to have become the world's leading manufacturer of high-temperature superconducting (HTS) tape through its subsidiary Faraday Japan factory.This tape is...

    2023-10-11
    Bekijk vertaling
  • Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory Achieves New Breakthrough

    On February 7th, at the Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory located in the HGTECH Technology Intelligent Manufacturing Future Industrial Park, Huang Wei, the technical director of the laboratory and the director of HGTECH Technology's semiconductor product line, gestured with his hands to introduce the principle of "glass through-hole technology" to Changjiang ...

    02-18
    Bekijk vertaling