Nederlands

150 kW Ultra High Power Laser Sensor Released

324
2024-12-27 14:30:51
Bekijk vertaling

Recently, MKS announced the launch of a brand new Ophir ® A 150 kW ultra-high power laser sensor designed specifically for measuring ultra-high power levels up to 150 kW. This sensor has excellent accuracy and reliability, suitable for industrial and defense fields.

This water-cooled calorimeter has a working wavelength range of 900-1100 nm and can measure power from 10 kW to 150 kW. Its extremely low reflectivity (<0.5%) ensures operational safety. The 150 kW sensor integrates a beam collector and measurement unit, designed to meet the growing demand for higher power in applications. Applications such as the development and testing of high-power fiber lasers, directional energy systems, and cutting and drilling in industrial production.

Ophir Photonics General Manager Reuven Silverman said, "Directed energy and industrial applications such as cutting are driving demand for higher power lasers, but so far there is no reliable solution for situations where power exceeds 120 kW. The Ophir 150 kW ultra-high power laser sensor takes high-power measurement to a new level. It provides accurate and reliable results for the research and production teams of high-power laser manufacturers and directed energy weapon developers. Whether integrated into third-party systems or used with easy-to-use Ophir software, this sensor is a powerful tool for ultra-high power laser measurements, providing reliability and operational efficiency.

The Ophir 150 kW ultra-high power sensor consists of two components: a beam collector for processing high-power laser absorption and heat dissipation, and a unit for measuring power levels. The measurement unit is equipped with an RS232 interface and an "intelligent connector" interface, which can be used in conjunction with MKS's Centauri, StarBright, StarLite, and other Ophir smart displays; Juno and Juno+compact USB PC interface; Juno RS, Pulsar, and Quasar virtual power and energy meters; And EA-1 Ethernet adapter.

The design of the 150 kW ultra-high power sensor fully considers flexibility. Cooling options include using tap water or deionized (DI) water. With a 200mm aperture, it is lightweight and measures 520x545x750mm in size. When not containing water, it weighs less than 60 kg.

Source: Yangtze River Delta Laser Alliance

Gerelateerde aanbevelingen
  • Manufacturing customized micro lenses with optical smooth surfaces using fuzzy tomography technology

    Additive manufacturing, also known as 3D printing, has completely changed many industries with its speed, flexibility, and unparalleled design freedom. However, previous attempts to manufacture high-quality optical components using additive manufacturing methods often encountered a series of obstacles. Now, researchers from the National Research Council of Canada have turned to fuzzy tomography (a...

    2024-05-30
    Bekijk vertaling
  • Lithuanian and Japanese researchers develop silver nanolaser

    Recently, researchers from Kaunas University of Technology (KTU) in Lithuania and the Tsukuba National Institute of Materials Science in Ibaraki, Japan, have collaborated to successfully develop a new type of nanolaser based on silver nanocubes.Although its structure is small and can only be observed through high-power microscopes, its potential application prospects are broad, and the research te...

    2024-12-24
    Bekijk vertaling
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    Bekijk vertaling
  • TRUMPF helps upgrade the automation of 3D laser processing for automotive thermoforming

    (Dechengen, Germany, March 24, 2025) - TRUMPF Group in Germany has now provided end customers with a fully automated one-stop solution for laser processing systems. With this solution, customers can not only shorten the production cycle, but also effectively reduce the cost of 3D laser material processing. Our laser equipment has excellent production efficiency. Now, through the automation upgrade...

    04-02
    Bekijk vertaling
  • What is field assisted additive manufacturing?

    Dr. Tan Chaolin from the Singapore Institute of Manufacturing Technology, in collaboration with China University of Petroleum, Shanghai Jiao Tong University, Princeton University, University of Malta, Huazhong University of Science and Technology (Professor Zhang Haiou), University of California, Irvine, Hunan University, and EPM Consulting, published an article titled "Review on Field Assisted Me...

    2024-07-29
    Bekijk vertaling