Nederlands

China University of Science and Technology proposes composite cold field 3D printing technology for liquid crystal elastomers

93
2025-02-25 14:49:16
Bekijk vertaling

Recently, Associate Professor Li Mujun from the School of Engineering Sciences and the Institute of Humanoid Robotics at the University of Science and Technology of China, together with researchers such as Professor Zhang Shiwu, has made significant progress in the field of intelligent material 3D printing. The research team proposed composite cold field 3D printing technology and successfully prepared near ambient temperature responsive liquid crystal elastomers (NAT LCEs) with high orientation sequence parameters and multivariate deformation capabilities. Based on this, an intelligent wristband system with significantly improved heart rate monitoring accuracy was developed. The results were published in the journal ACS Nano under the title "3D Printing of Near Adaptive Responsive Liquid Crystal Elastomers with Enhanced Nematic Order and Pluralized Transformation".

Liquid crystal elastomers, as a new type of intelligent material, have important application value in the fields of soft robots, biomedical devices, and wearable electronics. Traditional liquid crystal elastomers face bottlenecks such as high response temperature (>70 ℃) and limited programmability in manufacturing processes, which severely restrict their practical applications. The development of a new type of liquid crystal elastomer with near ambient temperature response characteristics and precision machining has become a key scientific problem that urgently needs to be overcome in this field. In response to this issue, the research team innovatively proposed a "low-temperature nozzle+cooling platform" composite cold field collaborative control strategy, achieving multiple technological breakthroughs: 1. Precise control of liquid crystal element orientation: maintaining high ink viscosity through a 5 ℃ low-temperature printing environment, inducing highly oriented alignment of liquid crystal elements through shear force, and increasing the orientation sequence parameters by more than 30 times compared to traditional room temperature printing methods. 2. Multivariate deformation programming: achieving reversible deformation of complex structures such as saddles, cones, and English letters. 3. Biocompatible applications: The material responds to temperature and adapts to the human tolerance range, successfully developing an intelligent heart rate monitoring wristband system that can actively adhere to the skin.

 



Figure 1. Schematic diagram of the working principle of the composite cold field 3D printing system


The structure printed in this study exhibits good environmental adaptability: the disk sample spontaneously forms a saddle shape at room temperature, with an increase in curvature at 10 ℃ and a conical shape at 60 ℃. Gradient programming is achieved through dynamic temperature control, and precise curling deformation is achieved through layered temperature control programming for structures such as "USTC" letters. The research team also explored the application of this technology in the field of precision medicine. The liquid crystal elastic wristband with integrated liquid metal circuit actively adheres to the wrist under PID temperature control, significantly improving measurement accuracy and reducing noise. The performance of 1000 fatigue tests remains unchanged, promoting the development of soft robotics technology, biomedical instruments, and wearable electronic devices.

 



Figure 2. Programmable Multivariate Deformation Display and Application


Li Dongxiao, a master's student in the Department of Precision Machinery and Precision Instruments at the University of Science and Technology of China, and Sun Yuxuan, a postdoctoral fellow, are co first authors of the paper. Associate Professor Li Mujun, Professor Zhang Shiwu, and Postdoctoral Fellow Sun Yuxuan are co corresponding authors. Professor Pan Tingrui from the Suzhou Institute of Advanced Study at the University of Science and Technology of China and Professor Li Weihua from the University of Wollongong in Australia are co authors of the paper. This research has received support from the National Key Research and Development Program of the Ministry of Science and Technology, the Natural Science Foundation of Anhui Province, and the Joint Fund of "New Medicine of University of Science and Technology of China". Some experiments have received support from platforms such as the Micro Nano Research and Manufacturing Center of the University of Science and Technology of China and the Physical and Chemical Science Experimental Center of the University of Science and Technology of China.

Source: opticsky

Gerelateerde aanbevelingen
  • Coherent and Faraday sign a partnership to expand the manufacturing scale of high-temperature superconducting (HTS) tapes

    Recently, American photonics giant Coherent and Japan's Faraday 1867 Holdings signed a Letter of Intent (LOI), with the goal of expanding the manufacturing scale of high-temperature superconducting (HTS) tapes to be widely used in large-scale deployment of nuclear fusion reactors, while also promoting the transformation of green energy. Coherent's excimer laser is expected to be more widely used i...

    2023-10-12
    Bekijk vertaling
  • Manufacturing customized micro lenses with optical smooth surfaces using fuzzy tomography technology

    Additive manufacturing, also known as 3D printing, has completely changed many industries with its speed, flexibility, and unparalleled design freedom. However, previous attempts to manufacture high-quality optical components using additive manufacturing methods often encountered a series of obstacles. Now, researchers from the National Research Council of Canada have turned to fuzzy tomography (a...

    2024-05-30
    Bekijk vertaling
  • Researchers develop innovative quantum dot lasers for advanced frequency combs

    Researchers at the University of California, Santa Barbara have made significant breakthroughs in laser technology, introducing a groundbreaking quantum dot mode-locked laser that allows for independent generation of amplitude and frequency modulation combs from a single device. This cutting-edge dual mode laser paves the way for the creation of small-sized and energy-efficient frequency combs for...

    2023-11-17
    Bekijk vertaling
  • A new method for generating controllable optical pulse pairs using a single fiber laser

    Researchers from Bayreuth University and Konstanz University are developing new methods to control ultra short laser emission using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse interval of lasers is set by dividing each pulse into two pulses and delaying them at different, mechani...

    2024-01-15
    Bekijk vertaling
  • New progress in in-situ identification and quantitative research of methane carbon isotopes in the ocean

    Recently, Zhang Xin's research team from the Institute of Oceanography, Chinese Academy of Sciences, based on the in-situ laser Raman spectroscopy technology, made new progress in the in-situ recognition and quantification of methane carbon isotopes by using the significant differences in the Raman spectra of methane carbon isotopes (13CH4 and 12CH4). The relevant results were recently published i...

    2023-10-13
    Bekijk vertaling