Polski

Researchers use a new frequency comb to capture photon high-speed processes

139
2023-11-02 14:59:09
Zobacz tłumaczenie

From detecting COVID in respiration to monitoring greenhouse gas concentrations, laser technology called frequency combs can recognize specific molecules as simple as carbon dioxide to as complex as monoclonal antibodies, with unparalleled accuracy and sensitivity. Although frequency combs have incredible capabilities, their ability to capture high-speed processes such as hypersonic propulsion or protein folding into final three-dimensional structures is limited.

The National Institute of Standards and Technology (NIST), Toptica Photonics AG, and the University of Colorado at Boulder have now established a frequency comb system that can identify the presence of certain molecules in samples every 20 nanoseconds or billionths of a second.

Researchers may be able to use frequency combs to better understand the instantaneous intermediate steps in rapid movement, from the mechanics of hypersonic jet engines to the chemical reactions between enzymes that use this new function to regulate cell growth. The research results were published by the research team in the journal Nature Photonics.

The researchers used the commonly used dual frequency comb arrangement in their experiment, which consists of two laser beams that work together to detect the color spectrum of molecular absorption. Most dual frequency comb configurations use two femtosecond lasers to synchronously emit a pair of ultrafast pulses.

In this new experiment, researchers used a simpler and cheaper device called an "electro optical comb", which divides a continuous beam of light into two beams. Then, the electronic modulator changes the beam of light, generating an electric field, shaping them into a single "tooth" of a frequency comb. Each tooth represents a different color or frequency of light that can be absorbed by molecules of interest.

In a typical trial run, the electro-optical comb used by the researchers only contained 14 teeth, while the traditional frequency comb had thousands or even millions of teeth. However, researchers were able to detect changes in light absorption on a time scale of 20 nanoseconds, as each tooth has higher light power and is spaced apart from other teeth in frequency.

Researchers used a small nozzle in an inflatable cylinder to measure the pulse of supersonic carbon monoxide 2 when they appeared for demonstration. Measure the content of carbon dioxide in the air, or the proportion of CO2 mixture. Researchers can determine the concentration of pulse motion 2 by observing changes in carbon monoxide.

Scientists have observed how carbon monoxide reacts with the atmosphere in Mode 2, resulting in a change in atmospheric pressure. Even with state-of-the-art computer simulations, it is difficult to accurately extract these details.

The data collected from these studies can shed light on how to better understand how greenhouse gases interact with climate or lead to the design of internal combustion engines.

In the setup, an optical parametric oscillator was used to shift the comb teeth from near-infrared color to mid infrared color absorbed by carbon monoxide. However, the optical parametric oscillator can be set to various parts of the mid infrared spectrum, allowing the comb to detect different substances that absorb light in these areas.

This study includes information that other researchers can utilize to develop similar systems in the laboratory, making this new technology publicly available in a wide range of research fields and industries.

Long pointed out, "With this setting, you can generate any comb you want. The adjustability, flexibility, and speed of this method open the door to many different types of measurements.

Source: Laser Network

Powiązane rekomendacje
  • Trotec Lasersysteme Darmstadt Laser Cutting Technology Center opens

    Trotec Laser, a manufacturer of laser technology in Upper Austria, is opening a new laser cutting competence center. The expanded showroom in Darmstadt now also houses three new large format laser cutters from the SP series. This strategic move is designed to meet the growing demand for large format laser cutting solutions.To celebrate the reopening of the Darmstadt Competence Centre, Trotec will ...

    2023-09-06
    Zobacz tłumaczenie
  • University of California, Los Angeles Joins the American High Power Laser Facility Alliance

    The University of California, Los Angeles is joining LaserNetUS, a high-power laser facility alliance established by the Department of Energy, aimed at advancing laser plasma science.Unique facilities are located in universities and national laboratories across the United States and Canada, providing a wide range of opportunities for researchers and students.The Phoenix Laser Laboratory at the Uni...

    2023-09-15
    Zobacz tłumaczenie
  • IPG introduces a new dual-beam laser with the highest single-mode core power

    From September 12 to 14, 2023, IPG Photonics, a well-known fiber laser technology leader in the United States, will showcase its latest innovative laser solutions at the Battery Show in Michigan, USA. IPG will also showcase industry-leading fiber laser sources and automated laser systems for electric vehicle battery welding applications.New laser technology pushes the limits of battery welding spe...

    2023-09-14
    Zobacz tłumaczenie
  • The Japanese team uses laser technology for ice core sampling to accurately study climate change

    Recently, a research team from the Astronomical Glaciology Laboratory under the RIKEN Nishina Center (RNC) of the Japanese Institute of Physics and Chemistry announced that they have developed a new laser based sampling system for studying the composition of glacier ice cores.The above image shows the discrete holes sampled 150mm from the shallow ice core of the Fuji Ice Dome in Japan (Southeast ...

    2023-09-23
    Zobacz tłumaczenie
  • The influence of post-processing methods on the fatigue performance of materials prepared by selective laser melting

    Researchers from Opole University of Technology in Poland have reported the latest progress in studying the effect of post-processing methods on the fatigue performance of materials prepared by selective laser melting (SLM). The related research was published in The International Journal of Advanced Manufacturing Technology under the title "Influence of post processing methods on fatigue performan...

    01-17
    Zobacz tłumaczenie