Polski

DLR and Tesat laser terminals pave the way for high-speed data transmission from space

139
2023-11-02 15:16:04
Zobacz tłumaczenie

Due to the surge in the deployment of small satellites, the increasing congestion of data transmission has always been a persistent problem in the aerospace industry. The collaboration between the Communication and Navigation Research Institute of the German Aerospace Center and Tesat Spacecom GmbH and Co. KG TESAT provides a powerful solution. They successfully developed and tested OSIRIS4CubeSat, a compact laser communication terminal designed specifically for microsatellites, setting new standards in compact design and high-speed data transmission.

This success is the result of years of research in the field of optical satellite communication, "said Florian David, Director of DLR Communications and Navigation Research Institute. It showcases the astonishing potential of designing small, lightweight, and powerful optical satellite terminals. This is an important component of future satellite systems, such as for Earth observation or giant constellations.

For compact design
Setting standard cube satellites is becoming increasingly popular due to their standardized size and modular characteristics. Each cube shaped unit has a side length of 10 centimeters and can be modularized and expanded. The OSIRIS4CubeSat terminal complies with this standard, adopts a patented design, and uses electronic circuit boards as the mechanical foundation of optical components. The new design configuration achieves compactness without affecting performance, which is a significant leap for industries that prioritize cost-effectiveness.

The terminal was first launched on CubeL satellite as part of the PIXL-1 mission on June 24, 2021. Subsequent rigorous testing confirmed its reliability and error free functionality in space, proving that it is not just an experimental novelty.

Better than traditional radio systems
Data rate is a crucial aspect for any communication system, and the OSIRIS4CubeSat terminal will not disappoint people. It achieves a data rate of up to 100 megabits per second, which is superior to traditional radio systems. It is not affected by electromagnetic interference and eliminates channel crosstalk, which is a common drawback of traditional wireless channels.

This highlights the enormous opportunities brought by collaboration between German research and industry, "said Siegbert Martin, Chief Technology Officer of TESAT.

This technological advantage is particularly important as it simplifies the typically complex approval processes of regulatory agencies such as the Federal Network Agency and the International Telecommunication Union.

Data Security and Integration
In order to transmit data to Earth, the terminal utilized an encoding program developed by DLR. These programs ensure zero loss transmission and protect data from atmospheric interference. It is worth noting that the CubeL satellite and its OSIRIS4CubeSat terminal have been successfully integrated into the existing infrastructure of the German Space Operations Center. This marks a crucial step towards simplifying the operation of future microsatellite missions.

Business preparation
Even before the completion of the PIXL-1 task, Tesat had incorporated the technology into its commercial product line. These terminals are now available under the names "CubeLCT" and "SCOT20", not only experimental but also ready for a wider range of industrial applications. This enables the technology to be used for various future satellite missions to meet research and commercial needs.

The launch of the OSIRIS4CubeSat terminal has solved multiple challenges from data congestion to regulatory bottlenecks, making it an indispensable part of the next generation satellite system. Its success marks an increasing synergy between research programs and commercial applications, marking a significant step forward in the rapidly developing aerospace field.

Source: Laser Network

Powiązane rekomendacje
  • Researchers are studying lasers for controlling magnetic ripple interactions

    One vision for computing the future is to use ripples in magnetic fields as the fundamental mechanism. In this application, magnetic oscillators can be comparable to electricity and serve as the foundation of electronic products.In traditional digital technology, this magnetic system is expected to be much faster than today's technology, from laptops and smartphones to telecommunications. In quant...

    2024-02-11
    Zobacz tłumaczenie
  • Pressure sensing using dual color laser absorption spectroscopy

    The research team led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences recently designed a concentration independent pressure sensing technology for high-temperature combustion diagnosis. This method is based on dual color laser absorption spectroscopy.The results of this study have been published in Optics Letters.Aircraft eng...

    2024-03-09
    Zobacz tłumaczenie
  • The improvement of additive manufacturing through artificial intelligence, machine learning, and deep learning

    Additive manufacturing (AM) has made it possible to manufacture complex personalized items with minimal material waste, leading to significant changes in the manufacturing industry. However, optimizing and improving additive manufacturing processes remains challenging due to the complexity of design, material selection, and process parameters. This review explores the integration of artificial int...

    02-24
    Zobacz tłumaczenie
  • The scientific research team of Shenzhen University of Technology has discovered a new mechanism of attosecond pulse coherent radiation

    Recently, a team of Professor Ruan Shuangchen and Professor Zhou Cangtao from Shenzhen University of Technology proposed for the first time internationally a physical solution based on the generation of attosecond pulses and subperiodic coherent light shock radiation from a superluminal plasma wake field, and explained a new coherent radiation generation mechanism dominated by collective electron ...

    2023-10-14
    Zobacz tłumaczenie
  • Laser Uranium Enrichment Company (GLE) accelerates development

    Paducah, located in western Kentucky, may become the location of the world's first commercial facility to adopt this technology.Since 2016, Global Laser Enrichment Company (GLE) has partnered with the US Department of Energy to use its unique molecular process to concentrate 200000 tons of depleted uranium "tails" stored at the former Padiuka gas diffusion plant in western Kentucky.After years of ...

    2024-06-22
    Zobacz tłumaczenie