Polski

The official launch of FV4000 and FV4000MPE microscopes aims to redefine scientific imaging

492
2023-11-03 14:24:48
Zobacz tłumaczenie

Introduction to FLUOVIEW ™ The FV4000 confocal laser scanning microscope and FV4000MPE multiphoton laser scanning microscope have made breakthroughs in imaging technology, enabling researchers to make new scientific discoveries. The FV4000 and FV4000MPE microscopes aim to redefine scientific imaging, providing higher accuracy, lower noise, and higher sensitivity, setting new standards for image acquisition and data reliability.

The core of two new FLUOVIEW systems is Evident's revolutionary SilVIR ™ Detectors, a next-generation technology that enables researchers to obtain quantitative image data. With its silicon photomultiplier tube (SiPM) and patented digital signal processing technology, the SilVIR detector can provide excellent noise reduction and enhanced photon detection efficiency over a wider wavelength range, providing clearer and more accurate imaging results and quantitative image intensity data.

Excellent imaging quality and accuracy. The FV4000 and FV4000MPE microscopes use SilVIR detectors, perfectly combining sensitivity and accuracy, allowing researchers to obtain high-quality images that surpass previous generation laser scanning systems, even from weak fluorescence signals. This progress helps to ensure that images remain clear and have extremely low noise, enabling accurate quantification of fluorescence intensity to obtain more reliable data.

The updated TruSpectral technology of the system is combined with high sensitivity SilVIR detectors, allowing you to see more. Compared with traditional photomultiplier tube (PMT) detector technology, the signal-to-noise ratio and dynamic range have been improved by using SilVIR detector. The system changes the dynamic range of game rules, allowing researchers to capture images that shrink from macroscopic to subcellular structures without compromise.

The innovative near-infrared capability, with its expanded spectral range and improved multiplexing capability, enables the FV4000 system to detect industry-leading wavelengths ranging from 400 nm to 900 nm with a minimum step size of 1 nm.

The optical design of the FV4000 is optimized for near-infrared (NIR) imaging, featuring high transmittance optical elements from 400 nm to 1300 nm, modular laser combiners supporting up to 10 laser lines from 405 nm to 785 nm, and the award-winning X Line ™ Goal.

The advancement driven by artificial intelligence enhances your imaging experience with AI driven tools that reduce noise, simplify image analysis, and improve delayed imaging. TruAI noise reduction and image segmentation technology can optimize image quality and simplify data extraction, saving researchers valuable time and effort.

The improved modularity and flexibility are the same as the previous generation products, and our FLUOVIEW system is designed with flexibility and configuration suitable for your specific application. With FV4000, you can now add multi photon imaging functionality, allowing you to use the same system for two imaging modes.

Experience the revolutionary features of FLUOVIEW FV4000 and FV4000MPE microscopes, providing higher accuracy, sensitivity, and data reliability for your imaging experiments.

Source: Laser Network

Powiązane rekomendacje
  • BOFA launches the latest generation of high-temperature 3D printing filtration technology

    BOFA has consolidated its position as a market leader in additive manufacturing of portable smoke and particle filtration systems with the latest generation of 3D PrintPRO technology designed specifically for high-temperature processes.3D PrintPRO HT focuses on the 230V market and can filter high-temperature particles, gases, and nanoparticles emitted during polymer processing in the printing room...

    2024-04-15
    Zobacz tłumaczenie
  • First 6-inch thin film lithium niobate photonic chip wafer pilot production line

    Recently, Shanghai Jiao Tong University Wuxi Photon Chip Research Institute (CHIPX) located in Binhu District, Wuxi City, has achieved a breakthrough - the first 6-inch thin film lithium niobate photon chip wafer has been produced on China's first photon chip pilot line, and high-performance thin film lithium niobate modulator chips with ultra-low loss and ultra-high bandwidth have been mass-produ...

    06-11
    Zobacz tłumaczenie
  • Light Adv. Manuf. | Laser Direct Writing Assists Perovskite Optoelectronic Applications

    IntroductionMetal halide perovskites have excellent optoelectronic properties and have become the undisputed "star" materials in the semiconductor field, attracting great attention from both academia and industry. With a large amount of research investment, the application of perovskite covers various optical and optoelectronic fields such as single photon sources, micro nano lasers, photodetector...

    2024-03-25
    Zobacz tłumaczenie
  • Assisting Gas Mixing to Promote the Development of Fiber Laser Technology

    Just ten years ago, fiber laser cutting machines were considered experts in thin plates. The stores quickly realized that they had to invest in them to compete, at least by reducing their instrument materials. For high-quality sheet metal cutting, CO2 laser is still the way to go. Of course, fiber lasers can cut thicker blanks, but the quality is not very good, and their speed advantage almost dis...

    2024-01-11
    Zobacz tłumaczenie
  • University of California, Los Angeles Joins the American High Power Laser Facility Alliance

    The University of California, Los Angeles is joining LaserNetUS, a high-power laser facility alliance established by the Department of Energy, aimed at advancing laser plasma science.Unique facilities are located in universities and national laboratories across the United States and Canada, providing a wide range of opportunities for researchers and students.The Phoenix Laser Laboratory at the Uni...

    2023-09-15
    Zobacz tłumaczenie