Polski

Researchers have reinvented laser free magnetic control

111
2023-11-09 15:04:20
Zobacz tłumaczenie

In a significant advancement in material physics, researchers from Germany and the United States have theoretically demonstrated that only extremely thin materials need to be α- RuCl3 can be placed in an optical cavity to control its magnetic state.


This discovery may pave the way for new methods of controlling material properties without the use of strong lasers.

The Role of Optical Vacuum Waves
It is crucial that cavity vacuum fluctuations alone are sufficient to transform the magnetic order of the material from serrated antiferromagnetism to ferromagnetism. This discovery, published in npj Computational Materials, is part of a recent trend in material physics research, which involves using strong lasers to alter the properties of magnetic materials.

By carefully adjusting the characteristics of the laser, researchers can fundamentally change the conductivity and optical properties of different materials. However, this method requires continuous stimulation of high intensity laser and is related to some practical problems, mainly due to the difficulty in preventing the material from heating up.

A New Material Control Method
Therefore, researchers are looking for methods to use light to achieve similar material control, but do not use strong lasers. It is in this context that theorists from the Max Planck Institute for Material Structure and Dynamics in Hamburg, Stanford University, and the University of Pennsylvania, Germany, have proposed a fundamentally different approach to changing the magnetism of real materials in cavities - without the use of lasers.

Their cooperation indicates that just a cavity is enough to α- The serrated antiferromagnetism of RuCl3 is transformed into ferromagnetism. Crucially, the team demonstrated that even in seemingly dark cavities, α- RuCl3 can also detect changes in the electromagnetic environment and correspondingly change its magnetic state.

in summary
This effect is purely a quantum effect, because in quantum theory, a cavity is never truly empty. On the contrary, the fluctuation of the light field causes the appearance and disappearance of light particles, which in turn affects the performance of the material.

The optical cavity limits the electromagnetic field to a very small volume, thereby increasing the effective coupling between light and materials, "said lead author EmilVi ñ asBostr ö m, a postdoctoral researcher in the MPSD theoretical group." Our research results indicate that careful design of the vacuum fluctuations in the cavity's electric field can lead to significant changes in the material's magnetic properties.

Since light excitation is not required, this method in principle bypasses the issues related to continuous laser driving. This is the first work to demonstrate cavity controlled magnetism in real materials, following previous research on cavity control in ferroelectric and superconducting materials.

Researchers hope that designing specific cavities will help them achieve elusive new stages of matter and better understand the subtle interactions between light and matter.

By carefully adjusting the characteristics of the laser, researchers can fundamentally change the conductivity and optical properties of different materials.

What is the quantum effect in this situation?
This is because in quantum theory, cavities are never truly empty. The fluctuation of the light field causes the appearance and disappearance of light particles, which in turn affects the performance of the material.

Source: Laser Network


Powiązane rekomendacje
  • Chinese femtosecond laser company completes Pre-A round of financing

    Recently, Qingdao Free Trade Laser Technology Co., Ltd. successfully completed the Pre-A round of financing. This financing is led by Shandong Letong Science and Technology Industry Finance New Energy Industry Development Fund Center (Limited Partnership). This financing will focus on attracting professional talents, including optical engineering experts, algorithm engineers, etc., in order to a...

    2024-11-19
    Zobacz tłumaczenie
  • The new generation of special optical fibers is suitable for the application of quantum technology

    Recently, physicists from the University of Bath in the UK have developed a new generation of specialized optical fibers to address the data transmission challenges of the future quantum computing era. This achievement is expected to promote the expansion of large-scale quantum networks. The research results were published in the latest issue of Applied Physics Letters Quantum.The highly anticipat...

    2024-08-02
    Zobacz tłumaczenie
  • South Korean DE&T will open new subsidiaries in the United States and Canada

    Recently, DE&T, a South Korean manufacturer of secondary batteries and display laser equipment, announced that the company will further expand its overseas business by opening new subsidiaries in the United States and Canada. According to its claim, this move is to carry out maintenance services for laser equipment locally. As of now, DE&T's overseas subsidiaries have increased from two to...

    04-08
    Zobacz tłumaczenie
  • Progress in the study of ultrafast electron dynamics using short light pulses

    When electrons move in molecules or semiconductors, their time scale is unimaginably short. The Swedish German team, including Dr. Jan Vogelsang from the University of Oldenburg, has made significant progress in these ultrafast processes: researchers are able to track the dynamics of electrons released on the surface of zinc oxide crystals using laser pulses with nanoscale spatial resolution and p...

    2024-01-08
    Zobacz tłumaczenie
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the research of interferometer wavefront calibration methods

    Recently, the research team of the High end Optoelectronic Equipment Department at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of wavefront calibration methods for interferometer testing. The relevant research results were published in Optics Express under the title of "High precision wavefront correction method ininterometer tes...

    2024-07-23
    Zobacz tłumaczenie