Polski

Scientists from the SLAC National Accelerator Laboratory in the United States have launched the world's most powerful X-ray laser

117
2023-11-17 14:08:46
Zobacz tłumaczenie

Scientists at the SLAC National Accelerator Laboratory have launched the world's most powerful X-ray laser, which will be used for in-depth atomic and molecular research.

It is a significant upgrade to its predecessor, as its brightness has increased by 10000 times.
The upgraded laser facility also uses superconducting accelerator components, allowing it to operate at low temperatures near absolute zero degrees Celsius.

Scientists from a high-tech facility on the West Coast of the United States have launched the world's most powerful X-ray laser for the first time. With these ultra bright X-ray pulses, they will conduct measurements, which will enable us to understand the atomic and molecular worlds.

The LCLS-II facility is an upgraded version of the linear accelerator coherent light source. It is located at the SLAC National Accelerator Laboratory of the US Department of Energy, near Stanford University in Menlo Park, California. LCLS-II is a so-called free electron laser, which means it accelerates the electron beam to near the speed of light and then sends the electron beam through a series of magnetic fields. These magnetic fields cause the path of electrons to oscillate, and due to these oscillations, electrons emit very strong X-rays, which can be used to image molecules and other things and observe how the atoms inside interact.

LCLS-II can emit up to 1 million X-ray pulses per second, 8000 times more than early LCLS lasers. When the increased pulse rate is combined with an increase in the number of electrons per pulse, the brightness of the new facility is more than 10000 times that of its predecessor.

Each pulse is very short. For high-energy X-rays, the pulse range is 10 to 50 femtoseconds; For low energy X-rays, the pulse can be stretched to 250 femtoseconds. It can also generate very short pulses, although in such a short period of time, each pulse is not as bright as usual.

With such short wavelengths, short pulses, and rapid repetition, scientists can use this facility to observe the occurrence of chemical reactions. Essentially, each pulse can image the configuration of the atoms involved in the reaction, and then link individual images together, much like a molecular clay film. As early as 2018, the LCLS facility was able to produce a movie about the chemical processes that occur in human vision and photosynthesis. The entire process only takes 1000 femtoseconds.

More broadly, the LCLS-II facility will be able to withstand up to one angstrom. This ability will enable researchers to study many different atomic processes, from those in biological systems to those in photovoltaic and fuel cells. Laser will also help illuminate superconductivity, ferroelectricity, and magnetism.

A very cool technology
One of the key components of upgrading is the installation of revolutionary technologies. Although early accelerators operated at room temperature, the upgraded LCLS-II used superconducting accelerator components, which allowed it to operate at low temperatures near absolute zero. LCLS-II also has better magnets to swing the electron beam.

Although LCLS-II has just started operating, the success of early LCLS accelerators has given researchers optimism. More than 3000 scientists have used the facility and published over 1450 publications. Time will reveal any new insights that this powerful laser possesses.

Source: Laser Network

Powiązane rekomendacje
  • Nuts: Adhere to embrace three-color laser technology, Krypton three-color laser optical machine to solve the speckle phenomenon

    Nuts is once again making waves in the home projection market with the launch of a new home projection product, Nuts N1 Air tri-color laser projector at a historically low price.In the increasingly "volume" home projection market, unswervingly layout of three-color laser nuts, breaking out of their own world.Laser projection permeability increases, nut is on topIn the first half of 2023, the home ...

    2023-09-05
    Zobacz tłumaczenie
  • Researchers have created an X Lidar lidar to help airports operate during volcanic eruptions

    Engineer and inventor Ezequiel Pawelko is one of the creators of X Lidar, a laser technology that can detect volcanic ash in the atmosphere, draw safe flight paths, and maintain airport operations during volcanic eruptions. Nowadays, he is engaged in other applications such as detecting space debris, monitoring natural resources and fisheries, preventing fires, and drawing radiation and wind maps ...

    2023-12-27
    Zobacz tłumaczenie
  • Alliance unit Radiant High Tech Blue Purple Laser Assists in Ocean Exploration

    The ocean covers over 71% of the Earth's surface, and so far humans have only explored about 5% of the ocean. This means that there are still 95% of the depths of the ocean that we know nothing about, making it the most mysterious and unknown place on our planet.600 years ago, Zheng He led a fleet to play the prelude to the era of great navigation, laying the foundation for us to understand the wo...

    2023-11-06
    Zobacz tłumaczenie
  • A professor from Sun Yat sen University proposes a new clean energy technology for laser manufacturing

    Energy conversion technology is an important research direction in modern science and engineering. Scientists are exploring new catalytic chemical methods to achieve the conversion of energy chemicals, such as photocatalysis and electrocatalysis. However, these highly anticipated catalytic chemistry technologies still have some problems in practical applications, and there is still a certain dista...

    2024-06-13
    Zobacz tłumaczenie
  • Using laser welding technology to manufacture rotor shafts at the speed of light

    How can EMAG Laser Technology accelerate the production of critical powertrain components using its flagship product ELC 6 system?The rapid popularity of electric vehicles worldwide indicates that production planners must increase their efforts in producing key components of electric vehicles, particularly the rotor shaft. The importance of the rotor shaft as the core component for converting elec...

    2024-07-17
    Zobacz tłumaczenie