Polski

Magdalena Ridge expands the capacity of optical interferometers

142
2024-01-05 14:17:47
Zobacz tłumaczenie

The Magdalena Ridge Observatory has purchased a second-generation off-axis beam compressor from Optical Surface, which will expand the functionality of the facility's optical interferometer.

Interferometer is a research tool that combines two or more light sources to create interference patterns that can be measured and analyzed. In astronomy, interferometers combine the light collected by multiple telescopes, allowing them to function together as a larger "virtual telescope". The light waves emitted by each telescope are combined together to make them brighter. Interferometry can provide a more detailed view of darker objects.

The mission of the Magdalena Ridge Observatory Interferometer Project is to develop a ten element imaging interferometer with a working wavelength between 0.6 and 2.4 microns and a baseline of 7.8 to 340 meters. The technical and scientific goal of interferometers is to generate images of weak and complex astronomical targets independent of the model at a resolution of over 100 times that of the Hubble Space Telescope.

Dr. Michelle Creech Eakman, a physics professor at MRO, commented: In order to minimize the diffraction effect of long-distance propagation, the original 7.5x off-axis beam compressor provided by Optical Surface was designed to allow for a reduction in the size of a 95mm star beam for final division between instruments on the telescope. Due to the excellent performance of this optical system, we decided to obtain a single source of three second-generation beam compressors from the optical surface, which provide a better field of view to help dry Involving alignment. These beam compressors will be key components in MROI as they will enable us to operate in smaller beam spaces outside the vacuum system. We hope to obtain the first batch of margins in the first half of 2024.

Dr. Aris Kouris, Sales Director of Optical Surface, added: Our beam compressor for MROI is located in the Magdalena Mountains at an altitude of 10600 feet, with significant temperature changes. This means that we need to incorporate invar element rods into the beam compressor design to improve heating stability. Our beam compressor uses high-precision off-axis mirrors, which can provide unobstructed output and efficient transmission. The beam compressor reduces the diameter of the collimated input beam to a smaller collimated output light The preferred optical tool for beams.

Source: Laser Net

Powiązane rekomendacje
  • New laser technology unlocks deuterium release in aluminum layers

    In a recent study, quadrupole mass spectrometry was used to measure the number of deuterium atoms in the aluminum layer.A recent study led by the National Institute of Laser, Plasma, and Radiation Physics and Sasa Alexandra Yehia Alexe from the University of Bucharest explored the details of laser induced ablation and laser induced desorption techniques using a 1053 nm laser source. The study was ...

    2023-11-25
    Zobacz tłumaczenie
  • GOLDEN laser die-cutting machine will be exhibited at UPAKEXPO 2024

    At the UpakExpo 2024 exhibition to be held in Moscow at the end of January, Chinese company Golden Laser will showcase for the first time two laser die-cutting machines focused on the printing, labeling, and packaging markets in Russia.The Golden Laser LC350 is a web machine designed to handle labels printed on digital and flexographic printing machines. It can cut, die cut, and kiss cut paper, pl...

    2024-01-12
    Zobacz tłumaczenie
  • Trends and Reflections on the Laser Industry in 2025

    In 2024, the laser industry will still reach new heights, although some predicted concerns have been fulfilled! From beginning to end, the development path of the manufacturing industry has been full of uncertainty, but as time passes and we enter a new year, new technologies continue to emerge like mushrooms after rain.In 2025, practitioners in the laser and manufacturing industries still face ma...

    01-02
    Zobacz tłumaczenie
  • Composite two-dimensional materials for fiber lasers demonstrate the prospects of ultra fast optical applications

    The formation of dissipative solitons is influenced by various factors, such as spectral filtering effect and Kerr nonlinearity effect. This interaction leads to the possibility of mode locking on a large range of parameters, generating pulses with completely different types and evolution from conventional physical laws and optical properties, tolerating higher nonlinear effects, and effectively a...

    2023-09-21
    Zobacz tłumaczenie
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong lasers and matter, short pulse width and high energy electrons are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite ultrafast electromagnetic radiation in a wide range of wavelengt...

    2024-06-21
    Zobacz tłumaczenie