Polski

A new method for generating controllable optical pulse pairs using a single fiber laser

166
2024-01-15 14:10:02
Zobacz tłumaczenie

Researchers from Bayreuth University and Konstanz University are developing new methods to control ultra short laser emission using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.

Traditionally, the pulse interval of lasers is set by dividing each pulse into two pulses and delaying them at different, mechanically adjustable distances. Alternatively, a laser source with slightly different orbital periods ("double comb") can be used to generate rapid travel delay from the superposition of two pulse combs.

Professor Georg Herink, the head of the ultrafast dynamics research team for Experimental Physics VIII at Bayreuth University, and his doctoral students Julia A. Lang, along with Professor Alfred Leinstorfer and Dr. Sarah R. Hutter from the University of Constance, have collaborated to demonstrate a pure optical method based on two pulse combs in a single laser. It can achieve extremely fast and flexible adjustable pulse sequences. Meanwhile, this can be achieved in very compact, glass fiber based light sources. By temporarily merging the two pulse combs outside the laser, researchers have obtained a pulse mode that can be set with any delay as needed.

Schematic diagram of dual comb fiber laser oscillator, external pulse combination, and real-time detection.

The researchers used a technique: instead of the usual single light pulse, two pulses are cycled in the laser. The first author of the study, Lang, explained, "There is enough time between two pulses to apply a single" interference "using the fast optical switch inside the laser. Using the knowledge of laser physics, this" intracavity modulation "can cause changes in pulse velocity, causing the two pulses to offset each other in time." The laser source based on glass fiber is manufactured by Hutter and Leitenstorfer from the University of Konstanz.

Thanks to special real-time measurement methods, researchers at Bayreuth University can now accurately observe how short light pulses (called solitons) move when subjected to external influences. This real-time spectral interferometry technology can accurately measure the distance between each pair of pulses - over 10 million times per second. Herink explained, "We have demonstrated that we can adjust time extremely quickly on a large scale and achieve freely programmable forms of motion.". They proposed an innovative method for controlling solitons, which not only provides new insights into soliton physics, but also opens up possibilities for the particularly fast and efficient application of ultra short laser pulses. The research findings have been published in the journal Science Advances.

Source: Laser Manufacturing Network

Powiązane rekomendacje
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    Zobacz tłumaczenie
  • Han's Laser's net profit in the third quarter decreased by 45.37% year-on-year

    Recently, Han's Laser released a third quarter report, stating that the company achieved a revenue of 3.301 billion yuan in the third quarter, a year-on-year decrease of 8.96% (after adjustment); The net profit attributable to shareholders of the listed company was 209 million yuan, a year-on-year decrease of 45.37% (after adjustment).During the reporting period, the company's operating profit, to...

    2023-10-25
    Zobacz tłumaczenie
  • Nankai University makes progress in the field of free electron photon interactions

    Recently, a research team led by Professor Cai Wei and Professor Xu Jingjun from the School of Physical Sciences at Nankai University has experimentally confirmed for the first time the generation of polaritons, also known as Smith Purcell radiation, at the two-dimensional scale, and further demonstrated the ability of free electrons to regulate two-dimensional Smith Purcell radiation. The researc...

    02-11
    Zobacz tłumaczenie
  • The Key Role of Laser Pointing Stability in the Application of Lithography Systems

    Lithography is one of the core processes in semiconductor manufacturing, and extreme ultraviolet lithography technology, as a new generation lithography technology, is also in a rapid development stage. The basic principle is to use photoresist (also known as photoresist) to form corrosion resistance due to photochemical reactions after being photosensitive, and to engrave the patterns on the mask...

    2024-07-02
    Zobacz tłumaczenie
  • Researchers have demonstrated a breakthrough boson sampling method using ultracold atoms in optical lattices

    JILA researcher, National Institute of Standards and Technology (NIST) physicist, physics professor Adam Kaufman and his team at the University of Colorado Boulder, as well as NIST collaborators, demonstrated a new method of cross laser beam lattice sampling using ultracold atoms for boson sampling in two-dimensional optics. This study, recently published in the journal Nature, marks a significant...

    2024-05-10
    Zobacz tłumaczenie