Polski

Researchers use laser doping to enhance the oxidation of IBC solar cells

151
2024-02-20 14:09:58
Zobacz tłumaczenie

Researchers from the International Solar Research Center at Konstanz and Delft University of Technology have discovered a method to pattern the back end of a cross finger rear contact battery, improving its efficiency by making certain parts of the solar cell thicker.

Researchers have developed a new technology that enhances oxidation in selected areas by patterning the back or back of IBC solar cells through laser doping processes.
The team found that this led to more effective patterning and also served as a protective layer for further manufacturing steps. This provides potential for expanding manufacturing scale and achieving commercialization of solar energy technology.

The new method utilizes the enhanced oxidation performance of phosphate glass layers in the local laser doped region with high phosphorus concentration. This method is expected to make these cells more efficient.
Since the development of the first batch of IBC batteries in the early 1970s, they have been widely used as the back or non lighting side of solar cells.

Compared to traditional double-sided contact solar cells, the advantage of IBC cells is that they eliminate any optical shadow loss caused by the metal fingers and busbars on the front. This makes solar cells have a higher short-circuit current density and reduces the complexity of battery interconnection within the module.

Therefore, a more comprehensive front surface texture and light capture scheme can be used on the front surface of the IBC structure. This design architecture makes it the perfect component for mechanically stacked batteries using higher bandgap technology.

The Fraunhofer Solar Systems Research Institute, headquartered in Germany, also achieved a record 26% conversion efficiency of double-sided contact silicon solar cells in 2021. Due to its low complexity, it is favored in industrial production.
Last September, researchers from the Fraunhofer Solar Energy Institute ISE and NWO Institute AMOLF also developed a multi junction solar cell with an efficiency of a record breaking 36.1%. This method stacks multiple layers of absorbing materials together, allowing each layer to effectively capture specific parts of the solar spectrum.

Source: Laser Net

Powiązane rekomendacje
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the field of femtosecond laser air filamentation self focusing threshold research

    Recently, the research team of the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research on the repetition rate dependent femtosecond laser air filamentation self focusing threshold. The relevant research results were published in Optics Express under the title "Pulse repetition rate ...

    2024-08-02
    Zobacz tłumaczenie
  • Laser fusion breakthrough brings greater energy explosion

    Recently, scientists from the National Ignition Facility at Lawrence Livermore National Laboratory in California produced a burst of energy by bombarding hydrogen pellets with 192 laser beams, briefly reproducing the fusion process that powers the sun. This is a repeat of an experiment in December last year, but this time the scientists generated more energy, with a gain almost double that of the ...

    2023-09-26
    Zobacz tłumaczenie
  • Amazemet uses Siemens Xcelerator software for scaling metal 3D printing

    Polish metal 3D printing company Amazemet uses the Xcelerator software combination from industrial manufacturing company Siemens.The spin off company of Warsaw University of Technology is using Siemens workflow management software to develop its metal powder atomizer and 3D printing post-processing equipment.Amazemet was founded in 2016, and its ultrasonic atomization device is capable of producin...

    2024-04-18
    Zobacz tłumaczenie
  • Germany's Tongkuai Laser Austria's Parsing Intelligent Factory Completed Expansion

    This month, German laser giant Trumpf completed an expansion project at its smart factory in Pasing, Austria. The opening ceremony was held in the presence of members of the Tongkuai Group family and representatives from the business and political circles. Over the past two years, Tongkuai has invested approximately 40 million euros in the expansion of the factory. The company has built two new...

    2024-09-14
    Zobacz tłumaczenie
  • Progress in Theoretical Research on the Mechanism of Liquid Terahertz Wave Generation by Precision Measurement Institute

    Terahertz waves have significant application value in communication and imaging. The nonlinear interaction between strong field ultrafast laser and matter is one of the important ways to generate terahertz waves. The experimental and theoretical research related to terahertz generation media such as plasma, gas, and crystal is relatively sufficient. However, liquid water is a strong absorbing medi...

    2024-03-22
    Zobacz tłumaczenie