Polski

Professor Hu Yanlei from the University of Science and Technology of China, Nat Commun Preparation of Durable Janus Thin Films with Mode Switching by Femtosecond Laser

282
2024-02-22 14:05:35
Zobacz tłumaczenie

Janus film is widely used in fields such as oil-water separation, water mist collection, and wearable patches due to its unique transmembrane directional water transport function. The function of traditional Janus thin films comes from the thickness direction of microchannels and single-sided chemical coating modifications (single-sided hydrophilic and hydrophobic modification of hydrophobic and hydrophilic substrates respectively). Water can be transported directionally from hydrophobic to hydrophilic surfaces through microchannels. However, during use, the chemical coating is prone to wear and tear, leading to functional failure. In non working conditions, microchannels are easily blocked by pollutants in the air, which greatly shortens the service life of Janus films. Faced with increasingly urgent practical application needs, the durability issue of Janus thin films urgently needs to be solved.

Professor Hu Yanlei from the School of Engineering Science at the University of Science and Technology of China and Associate Professor Zhang Yachao from Hefei University of Technology have innovatively considered the working mode and protection mode of Janus thin films separately. By stretching and releasing soft materials, they have achieved exposed and hidden protection of hydrophilic microporous groove channels, that is, switching between working and protection modes. When the Janus film encounters external mechanical friction or impact, the durability of the Janus film is improved by actively switching to the release protection mode. Based on the "mode switching" strategy, the team used femtosecond laser micro nano manufacturing method to prepare durable Janus thin films.

Research has found that the protective mode endows Janus film with mechanical durability, and it can still maintain the unidirectional transmission function of water droplets after 2000 friction cycles and 10 days of exposure to air (Figure 1). In addition, the protection mode can withstand harsh tests such as sandpaper friction, finger pressing, sand impact, tape peeling, and prevent pollutant particles from blocking channels (Figure 2). As a proof of concept, apply the mode switching durable Janus film to water mist collection in desert environments. For example, in the early morning when water mist is diffuse and there is no wind or sand, the Janus membrane is stretched to the working mode for water mist collection, and when a sandstorm occurs, it switches to a protective state to resist sand friction and impact. Taking the 30 minute water mist collection volume as an example, the results showed that the collection volume only decreased by 10% after rigorous testing, demonstrating the durable water mist collection ability of Janus film. In addition, long-term storage experiments were conducted on the protective mode Janus film under different temperatures, humidity, and chemical environments. The results showed that the water mist collection ability of the Janus film stored for 10 days was basically consistent with the original film, demonstrating the thermal stability, humidity stability, and chemical stability of the Janus film (Figure 3). The mode switching strategy proposed in this study has significant potential in promoting the practical application of Janus thin film functional devices in various fields such as multiphase separation purification, microfluidic control, and wearable health monitoring patches.

On February 16, 2024, the work was titled "Dual Janus membrane with on-demand mode switching fabricated by femtosecond laser" and published in Nature Communications.

Figure 1. Design and preparation of durable Janus film with "mode switching"


Figure 2. Mechanical durability test of Janus membrane under extreme conditions


Figure 3. Application of water mist collection based on durable Janus film



Source: Sohu

Powiązane rekomendacje
  • Omnitron Announces Partnership with Silex Microsystems to Mass Produce MEMS Scanning Mirrors for LiDAR

    According to reports, Omnitron Sensors, a pioneer in the development of MEMS sensing technology for large-scale and low-cost markets, recently announced that it will collaborate with Silex Microsystems, a subsidiary of Semielectronics, to mass produce MEMS scanning mirrors for LiDAR.Eric Aguilar, co-founder and CEO of Omnitron Sensors, said, "We have noticed a huge demand from manufacturers of adv...

    2023-09-19
    Zobacz tłumaczenie
  • Multi functional materials for solar cells and organic light-emitting diodes to achieve high performance and stability

    Through joint research, a team developed a 4-amino-TEMPO derivative with photocatalytic performance and successfully used it to produce high-performance and stable fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs). This paper was published in the journal Materials and Energy Today.The developed 4-amino-TEMPO derivatives have the characteristic of ...

    2024-06-03
    Zobacz tłumaczenie
  • Micro ring resonators with enormous potential: hybrid devices significantly improve laser technology

    The team from the Photonic Systems Laboratory at the Federal Institute of Technology in Lausanne has developed a chip level laser source that can improve the performance of semiconductor lasers while generating shorter wavelengths.This groundbreaking work, led by Professor Camille Br è s and postdoctoral researcher Marco Clementi from the Federal Institute of Technology in Lausanne, represe...

    2023-12-11
    Zobacz tłumaczenie
  • Observation of nanoscale behavior of light driven polymers using combination microscopy technology

    Expanding our scientific understanding often boils down to observing what is happening as closely as possible. Now, researchers from Japan have observed the nanoscale behavior of azo polymer films and triggered them with lasers.In a study published in Nano Express last month, researchers at Osaka University used a combination of cutting-edge scanning high-speed atomic force microscopy and optical ...

    2024-03-12
    Zobacz tłumaczenie
  • SILICON AUSTRIA LABS and EV GROUP Strengthen Cooperation in Optical Technology Research

    EV Group, a leading supplier of wafer bonding and lithography equipment for the MEMS, nanotechnology, and semiconductor markets, and Silicon Austria Labs, a leading electronic systems research center in Austria, announced that SAL has received and installed multiple EVG lithography and photoresist processing systems in its MicroFab at the R&D cleanroom facility in Filach, Austria.These devices...

    2023-11-15
    Zobacz tłumaczenie