Polski

E-22 uncertainty optical frequency divider

126
2024-02-27 16:48:48
Zobacz tłumaczenie

The time/frequency unit is the most accurate among the seven basic units, so many measurement studies that pursue ultra-high accuracy and sensitivity will be transformed into frequency measurements to achieve higher measurement accuracy and sensitivity. For example, by measuring the relative changes in the ratio of different atomic transition frequencies, ultralight dark matter can be detected or constants can be studied to determine whether they change over time. By measuring different locations To verify the correctness of theories such as local position invariance and gravitational redshift, the frequency changes of light clocks at different times are used.

The essence of time/frequency measurement is to measure the frequency ratio between the measured object and the frequency standard. Therefore, the accuracy and sensitivity of frequency measurement depend on the performance of the frequency standard and the frequency ratio measurement device. In recent years, the development of optical clocks based on the electronic level transitions of atoms in the optical band has been rapid: currently, the optical clock with the lowest uncertainty has entered the 10-19 level, and the long-term frequency instability has also entered the 10-19 level. Researchers have begun to explore effective ways to gradually achieve the performance of optical clocks in the 10-21 level. In terms of optical frequency ratio measurement, the most accurate result at present was achieved by the State Key Laboratory of Precision Spectrum of East China Normal University in 2016: the influence of optical frequency noise and microwave frequency standard performance on optical frequency division or frequency ratio measurement was further eliminated by using the titanium sapphire femtosecond optical comb with frequency precision phase-locked to ultra stable narrow linewidth laser, combined with optical comb transmission oscillator technology and optical frequency auto reference microwave frequency standard technology, As a result, the additional noise introduced by the frequency ratio measurement is between 6-19 (1-second average time) and 4-21 (104 second average time), and the uncertainty of the frequency ratio measurement is between 1.4-10-21, which is much smaller than the frequency instability and uncertainty of the current optical clock. Therefore, it can meet the application requirements of the current optical clock.

In order to meet the application of the 10-21 uncertainty optical clock in the future and realize the frequency measurement with the accuracy of 10-21, the State Key Laboratory of Precision Spectroscopy of East China Normal University has improved the stability of the mechanical structure and the effective optical path of the system, and has adopted the titanspar femtosecond optical comb whose frequency is locked in the hydrogen clock, so as to realize the long-term stable operation of the system and overcome the impact of the periodic change of the environment on the frequency ratio measurement, And also using optical comb transmission oscillator technology and optical frequency self reference microwave frequency standard technology to reduce the influence of optical comb frequency noise and microwave frequency standard frequency noise, it was verified that the noise introduced by the optical divider in the optical frequency ratio measurement process can reach 4 × 10-18 (1 second average time) and 6 × 10-22 (105 second average time), and the uncertainty of optical frequency ratio measurement can reach 3 × 10-22, maintaining a world leading position in this research direction. In this device, they achieved high-precision and low-noise optical frequency division using a stable 10-13 second high noise comb, providing ideas for using chip combs to achieve high-precision optical frequency division in the future.

This research achievement was first published in APL Photonics 8, 100802 (2023) by the State Key Laboratory of Precision Spectroscopy Science and Technology of East China Normal University. On the basis of this article, they also developed a high-precision portable optical frequency ratio measurement device for studying the frequency ratio measurement of different optical clocks.



Figure 1: Schematic diagram of optical frequency divider

Powiązane rekomendacje
  • Scientists have successfully miniaturized erbium-based erbium lasers on silicon nitride photonic chips

    Scientists from the Federal Institute of Technology in Lausanne (EPFL) have successfully miniaturized a powerful erbium-based erbium laser on silicon nitride photonic chips. Due to the large volume and difficulty in shrinking of typical erbium-based fiber lasers, this breakthrough is expected to make significant progress in optical communication and sensing technology.Since the 1960s, lasers have ...

    2024-06-13
    Zobacz tłumaczenie
  • Laser driven leap forward: the next generation of magnetic devices for controlling light is born

    Recently, a new laser heating technology developed by a Japanese research group has paved the way for advanced optical communication equipment by integrating transparent magnetic materials into optical circuits.This breakthrough was recently published in the journal Optical Materials. It is crucial for integrating magneto-optical materials and optical circuits, which has been a significant long-te...

    2023-12-21
    Zobacz tłumaczenie
  • Laser communication is expected to completely change optical links

    Laser technology is becoming a game changer in the field of satellite communication (SATCOM), capable of creating ultra secure networks that can transmit large amounts of data at unprecedented speeds through satellite networks and constellations.With continuous progress, the industry is ready for growth and collaboration, seizing the untapped potential of disconnected populations. The ability to h...

    2023-09-20
    Zobacz tłumaczenie
  • Significant progress has been made in the research on the detection of microwave electric fields in the Rydberg area of Shanghai Institute of Optics and Technology

    Recently, the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, and the East China Research Team of the Key Laboratory of Quantum Optics, Chinese Academy of Sciences, together with the research team of Professor Chen Liqing of East China Normal University, demonstrated a Rydberg microwave sensor with high sens...

    2024-05-08
    Zobacz tłumaczenie
  • Hymson acquires Leister Laser's plastic welding business, further advancing its globalization strategy

    On February 27th, Hymson and Leister Group successfully signed a strategic acquisition agreement, announcing the wholly-owned acquisition of the laser plastic welding business of Leister Group.On the same day, the two parties held a grand signing ceremony in Switzerland, which was attended by Mr. Zhao Shengyu, Chairman and General Manager of Hymson, Mr. Chen Jiewei, Director and CEO of Hymson, Mr....

    03-11
    Zobacz tłumaczenie