Polski

Researchers improve laser behavior by tying laser knots

142
2024-03-07 13:51:35
Zobacz tłumaczenie

Researchers have created a new type of laser that, despite environmental noise and manufacturing defects, still performs as expected. Technically speaking, researchers have created a topology, time, and mode-locked laser. This study has the potential to improve sensors and computing hardware.

A mode-locked laser emits light with regular pulses instead of a continuous beam. Pulses can be very countable and can be counted in picoseconds or femtoseconds, that is, trillions of a second or billions of a second. Each of these pulses can provide high power and have many applications, including medical ophthalmic surgeries, nuclear reactors, and optical storage systems. For example, in ophthalmic surgery, they can provide precise cutting ability without generating the heat generated by a continuous beam of light. In the locked mode, this is the amplitude and phase of the light passing through the resonant cavity on the laser.

The resonant wave in a mode-locked laser forms a stable pulse mode. Researchers have now introduced new coupling into the resonant light pulses in the laser cavity to enhance the robustness of the mode-locked laser. This progress enables scientists to achieve topological time mode locking, despite defects, manufacturing defects, and environmental noise, pulse modes still exist. This study may improve frequency combs for use in communication, sensing, and computing devices. Traditional frequency combs are easily affected by environmental instability and noise.

A paper describing these findings has been published in Natural Physics. The corresponding author of the study, Alireza Marandi, said, "This fundamental research may have many applications. By implementing topological behavior in mode-locked lasers, we are essentially creating a junction that can make the laser's behavior more robust to noise. If the laser is usually in a mode-locked state and you shake it, everything will go crazy.". However, if the laser pulses are tangled together, you can shake the system without any confusion, at least within a certain range of shaking. Researchers plan to use new and improved lasers to access nonlinear topological physics that traditional experimental platforms cannot achieve.

Source: Laser Net

Powiązane rekomendacje
  • The femtosecond laser was used to manufacture a magnetically responsive "Janus Origami" robot, which realized the effective integration of various droplet manipulation functions

    Recently, the reporter learned from the University of Science and Technology of China that Professor Hu Yanlei's team and his collaborators in the micro-nano Engineering Laboratory of the School of Engineering Science and Technology of the School have prepared a magnetic-responsive double-God origami robot that can be used for cross-scale droplet manipulation using femtosecond laser micro-nano man...

    2023-09-12
    Zobacz tłumaczenie
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    The femtosecond laser emits ultra short optical pulses with a duration of less than one picosecond, reaching the femtosecond level (1fs=10-15s). The characteristics of femtosecond laser are extremely short pulse width and high peak intensity.Ultra short pulse trains can minimize residual heat, ensure precise material processing, and minimize incidental damage. Its high peak intensity can induce no...

    2024-04-02
    Zobacz tłumaczenie
  • Multiple international laser companies continue to increase investment in the Chinese market

    In early spring of 2025, China's laser industry once again attracted the attention of global laser giants, ushering in a new wave of international investment boom.After several global laser giants accelerated their layout in China in 2024, in February 2025, Carl Zeiss from Germany and Bystronic from Switzerland, two global giants in the optical and laser fields, also announced significant expansio...

    02-15
    Zobacz tłumaczenie
  • Israeli startup has developed a new laser powder bed fusion technology (SLS)

    Starting company 3DM from Israel has developed a new laser powder bed fusion technology (SLS) and recently released its first product. It is reported that the new technology developed by this young company established in 2016 will open up the possibility of new materials.3DM quantum cascade laserThe quantum cascade laser (QCL) stands out in the competition of 3DM in the SLS field. QCL was develope...

    2023-10-27
    Zobacz tłumaczenie
  • High sensitivity visualization of ultrafast carrier diffusion using a wide field holographic microscope

    A sketch of the imaging and holographic parts of a transient holographic microscope, including a pulse sequence, to illustrate the signal modulation method. By imaging the pinhole array at the sample position, a diffraction limited excitation spot array can be created, allowing for the simultaneous collection of transient data around 100 excitation spots.Femtosecond transient microscopy is an impo...

    2023-12-25
    Zobacz tłumaczenie