Polski

Progress in research on neodymium doped strontium aluminate lanthanum magnesium laser crystals by Shanghai Optics and Machinery Institute

133
2024-04-17 16:11:47
Zobacz tłumaczenie

Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of Nd: ASL (Sr0.7Nd0.05La0.25Mg0.3Al22.7O19) laser crystals, and the related achievements were published in Infrared Physics&Technology under the title of "Tunable laser operations on Nd doped continuum and lanthanum aluminum crystals".

Neodymium (Nd3+) ion is one of the common activating ions, and its absorption peak matches the emission wavelength of commercial laser diodes (LDs), with high absorption efficiency at 0.9, 1.05, and 1.35 μ There are emission peaks at position m, and laser emission has been achieved in various matrix materials. Nd: ASL is a typical disordered crystal, belonging to the hexagonal crystal system. The high disorder leads to its spectral broadening, which is beneficial for generating lasers of different wavelengths.

In order to investigate its tuning characteristics, the research team grew Nd: ASL crystals with a doping concentration of 5%, and measured their fluorescence lifetime to be approximately 371.8 μ S. At 1.05 μ Near m, its fluorescence spectrum has four strong and continuous emission spectra. A birefringent filter was inserted into the V-shaped resonant cavity for tunable laser experiments. By using output mirrors with transmittance of 5%, 7%, and 10%, three independent wavelengths (1050, 1062, and 1074 nm) of laser output were obtained. The wavelength range is 1049.59-1054.43 nm and 1059.71-1078.18 nm for tuning, with a tuning width greater than 20 nm, which is consistent with the spectrum. The phenomenon of multi wavelength laser output was also observed in the experiment. The results indicate that Nd: ASL crystals are a gain medium suitable for tunable lasers. Compared with single wavelength laser media, controlling and changing the wavelength is much more convenient and suitable for complex application scenarios with higher accuracy or more wavelengths.

This work has received support from projects such as the National Natural Science Foundation of China.

Figure 1. Fluorescence spectrum of Nd: ASL crystal

Figure 2. Laser output with three wavelengths at different output mirror transmittance

Figure 3. Output power at different wavelengths under the same absorption pump power

Source: Shanghai Institute of Optics and Precision Machinery

Powiązane rekomendacje
  • Three core processes of laser soldering support the development of PCB electronics industry

    In the field of modern electronic manufacturing, PCB (printed circuit board) serves as the carrier of electronic components. In its manufacturing process, laser soldering technology has become a key link in PCB electronic manufacturing due to its advantages of high precision, high efficiency, and low thermal impact. This article will explore the application of laser soldering technology and its ma...

    2024-04-15
    Zobacz tłumaczenie
  • Measurement of Fine Structure and Spin Interaction of Quantum Materials through TriVista High Resolution Spectral Measurement System

    backgroundThe Jörg Debus team from the Technical University of Dortmund in Germany is dedicated to researching optical quantum information processing and quantum sensing in materials with potential applications. The team mainly studies the fine structure of materials under light fields, such as quantum dots, quantum effects of two-dimensional materials, semiconductor defects in diamonds, and ...

    2024-03-11
    Zobacz tłumaczenie
  • The efficiency of crystalline silicon solar cells has exceeded 27% for the first time, and Longi's research results have been published in Nature

    Recently, Longi Green Energy Technology Co., Ltd. (hereinafter referred to as "Longi"), as the first unit, published a research paper titled "Silicon heterojunction back contact solar cells by laser patterning" online in the journal Nature, reporting for the first time the research results of breaking through 27% of the photoelectric conversion efficiency of crystalline silicon cells through full ...

    2024-10-18
    Zobacz tłumaczenie
  • Free space nanoprinting beyond optical limitations can create 4D functional structures

    Two photon polymerization is a potential method for nanofabrication of integrated nanomaterials based on femtosecond laser technology. The challenges faced in the field of 3D nanoprinting include slow layer by layer printing speed and limited material selection due to laser material interactions.In a new report in Progress in Science, Chenqi Yi and a team of scientists in the fields of technical s...

    2023-10-09
    Zobacz tłumaczenie
  • IPG launches dual beam fiber laser for additive manufacturing applications

    Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.Ba...

    2024-11-25
    Zobacz tłumaczenie