Polski

Accurate measurement of neptunium ionization potential using new laser technology

93
2024-05-11 16:42:14
Zobacz tłumaczenie

Neptunium is the main radioactive component of nuclear waste, with a complex atomic structure that can be explored through mass spectrometry. This analysis is crucial for understanding its inherent characteristics and determining the isotopic composition of neptunium waste. Magdalena Kaja and her team from Johannes Gutenberg University in Mainz, Germany have developed a novel laser spectroscopy technique that can more accurately measure the ionization potential of neptunium compared to previous methods.

Neptunium is an actinide metal in the periodic table adjacent to uranium, with an atomic number of 93. The inspiration for its name comes from Neptune, located outside of Uranus in the solar system, which is a recognition of its position. Among the 25 known isotopes, most have extremely short lifetimes. However, the most stable isotope, neptunium 237 (237 Np), has a half-life of over 2 million years, making it a particularly dangerous nuclear pollutant.

The neptunium isotope samples available for this type of analysis are very small: they typically only contain a few atoms of the isotope.


Magdalena Kaja and her colleagues utilized a cutting-edge device that includes solid-state titanium: sapphire laser systems, enhanced laser ion sources, and high transmittance mass separators. This advanced equipment has played an important role in their research on neptunium.

The research team used this technique to measure the first ionization energy of neptunium, which is the energy required to remove the first electron from the outermost electron shell to form a positive ion. They accurately determined the value to be 6.265608 (19) eV. This measurement is not only consistent with the values previously reported in scientific literature, but also achieves an accuracy level more than ten times higher than any previous measurement.

This method can also be applied to the analysis and detection of trace amounts of neptunium in radioactive waste.

Source: Laser Net

Powiązane rekomendacje
  • Screen Innovation Launches Short Focus Elevated Electric Laser TV Projection Screen

    Screen Innovations has added a short focal lift electric screen solution to its component and material series, meeting the growing demand for large but hidden displays in small media rooms and company boards.Unlike traditional projection systems that require sufficient distance from the projector to the screen or perform best in a darkroom, pop-up laser TVs are only a few inches away from short fo...

    2023-10-27
    Zobacz tłumaczenie
  • Application of Airborne Lidar Calibration Board in Various Fields

    With the rapid development of technology, airborne LiDAR technology has become one of the key technologies in modern surveying, remote sensing, navigation and other fields. As an important component of this technology, the airborne LiDAR calibration board plays a crucial role in ensuring the accuracy and stability of the radar system. This article will explore the application and importance of air...

    2024-04-08
    Zobacz tłumaczenie
  • Fundamentals of Next Generation Photonic Semiconductors: Small Lasers

    This week, an illustration was published on the cover of the international journal Science, showcasing a powerful mode-locked laser emitted from a miniature photonic semiconductor.A research team led by Alireza Marandi, a professor of electrical engineering and applied physics at the California Institute of Technology, has successfully developed a conventional mode-locked laser large enough to fit...

    2023-11-13
    Zobacz tłumaczenie
  • Luxium Solutions completes strategic acquisition of Inrad Optics, a leading optical materials company

    Recently, Luxium Solutions, a high-performance crystal material supplier, announced the successful completion of its strategic acquisition of Inrad Optics, a leading optical materials company. This milestone transaction not only greatly enriches Luxium's innovative product matrix, but also injects valuable resources, operational wisdom, and capital drive into Inrad Optics. Both parties will work t...

    2024-07-20
    Zobacz tłumaczenie
  • Trumpf and SiMa. ai collaboration to develop AI laser

    Recently, Trumpf Group, a leading global provider of machine tools and laser technology solutions, announced that it has partnered with software company SiMa AI has signed a partnership agreement to develop lasers with artificial intelligence (AI).It is reported that SiMa. ai is a software centric embedded edge machine learning chip system company, and the goal of both parties is to equip Trumpf'...

    2024-07-19
    Zobacz tłumaczenie