Polski

Researchers have developed the world's smallest silicon chip quantum photodetector

89
2024-05-21 14:22:53
Zobacz tłumaczenie

Researchers at the University of Bristol have made significant breakthroughs in expanding quantum technology by integrating the world's smallest quantum photodetector onto silicon chips. The paper "A Bi CMOS Electron Photon Integrated Circuit Quantum Photodetector" was published in Science Advances.

In the 1960s, scientists and engineers were able to miniaturize transistors onto inexpensive microchips for the first time, marking a crucial moment in the beginning of the information age.

Now, scholars from the University of Bristol have demonstrated for the first time the integration of quantum photodetectors smaller than human hair onto silicon chips, bringing us closer to the era of quantum technology utilizing light.

The large-scale manufacturing of high-performance electronics and photonics is the foundation for achieving the next generation of advanced information technology. Understanding how to manufacture quantum technology in existing commercial facilities is a continuous international effort, and university research and companies around the world are working to address this issue.

Due to the expectation that building a single machine requires a large number of components, it is crucial for quantum computing to be able to manufacture high-performance quantum hardware on a large scale.

To achieve this goal, researchers from the University of Bristol have demonstrated a quantum photodetector that is implemented on a chip with a circuit area of 80 microns x 220 microns.

It is crucial that small size means that quantum photodetectors can be faster, which is the key to unlocking high-speed quantum communication and achieving high-speed operation of optical quantum computers.
The use of mature and commercialized manufacturing technologies helps to integrate other technologies such as sensing and communication as early as possible.

"These types of detectors are called homodyne detectors and can be seen everywhere in the application of quantum optics," explained Professor Jonathan Matthews, director of the Quantum Engineering Technology Laboratory leading the research.

"They operate at room temperature, and you can use them for quantum communication in extremely sensitive sensors such as state-of-the-art gravitational wave detectors, and some quantum computer designs will use these detectors."

In 2021, the Bristol team demonstrated how to connect photon chips with individual electronic chips to improve the speed of quantum photodetectors - now, through a single electron photon integrated chip, the team has further increased speed by 10 times while reducing footprint by 50 times.

Although these detectors are fast and small in size, they are also very sensitive.
"The key to measuring quantum light is sensitivity to quantum noise," explained Dr. Giacomo Ferrarti, the author.
"Quantum mechanics is responsible for the small, fundamental noise levels in all optical systems. The behavior of this noise reveals information about the types of quantum light propagating in the system, determines the sensitivity of optical sensors, and can be used to mathematically reconstruct quantum states. In our research, it is important to demonstrate that making detectors smaller and faster does not hinder their sensitivity in measuring quantum states."

The author points out that there is still more exciting research to be done in integrating other disruptive quantum technology hardware into chip scale. The use of new detectors requires improved efficiency and some work to be done to test the detectors in many different applications.

Professor Matthews added, "We have manufactured detectors using commercial foundries to make their applications easier to implement. While we are very excited about the impact of a range of quantum technologies, it is crucial that we, as a community, continue to address the challenge of scalable manufacturing with quantum technology.".

"If truly scalable quantum hardware manufacturing is not demonstrated, the impact and benefits of quantum technology will be delayed and limited."

Source: Laser Net

Powiązane rekomendacje
  • Hexconn announces the launch of a new modular 3D laser scanner designed specifically for large-scale surface inspection

    The new Absolute Scanner AS1-XL adopts the same "Shine" technology as its flagship product Absolute Scanner AS1, allowing it to collect clean 3D data from the most challenging surface types at a very high speed.The new scanner has a wider scanning line and is designed specifically for inspecting large surfaces and deep cavities in inspection applications such as aerospace panels, ship propellers, ...

    2023-09-27
    Zobacz tłumaczenie
  • The Ruefeng 30w picosecond laser brings unprecedented possibilities in the art of cutting resin eye lenses

    Ruifeng Picosecond laser: Open the door to the art of cutting resin eye lensesAs an important innovation in the modern eyewear industry, resin lenses bring us visual clarity and comfort with their lightness, transparency and impact resistance.However, with the continuous improvement of people's demand for quality and personalization, how to achieve accurate and beautiful cutting on resin eye lense...

    2023-09-14
    Zobacz tłumaczenie
  • Nanchang University research progresses in acoustic resolution photoacoustic microimaging enhancement

    As a promising imaging modality that combines the high spatial resolution of optical imaging and the deep tissue penetration ability of ultrasound imaging, photoacoustic microscopy (PAM) has attracted a lot of attention in the field of biomedical research, and has a wide range of applications in many fields, such as tumor detection, dermatology, and vascular morphology assessment. Depending on the...

    2024-09-18
    Zobacz tłumaczenie
  • Trumpf China 25 Years: From Model Factory to Global Strategic Fortress

    On March 14, 2000, Trumpf established its first company in China - Trumpf Metal Sheet Products Co., Ltd., headquartered in Taicang, 50 kilometers northwest of Shanghai. Nowadays, Taicang has become a global strategic stronghold for the company. 25 years ago, this production base was originally used to demonstrate sheet metal processing production for Chinese enterprises. In the seventh year afte...

    03-26
    Zobacz tłumaczenie
  • Photovoltaic converters for power transmission systems

    Scientists from the University of Hahn in Spain and the University of Santiago de Compostela conducted research to determine the most suitable semiconductor materials for high-power light transmission in terrestrial and underwater environments.HPOT, also known as laser power transfer, is a method of transmitting continuous power to a remote system using a monochromatic light source through an opti...

    2023-12-29
    Zobacz tłumaczenie