Polski

The use of laser equipment to recover refractory materials can reduce 800,000 tons of carbon dioxide emissions

122
2023-09-04 17:03:28
Zobacz tłumaczenie

Refractory material can withstand high temperature above 1500℃. They are essential materials for industrial furnaces that produce glass or ceramics, non-ferrous metals and steel.

 

The service life of manufactured refractory products can range from a few days to many years, depending on the material, the temperature in the melting vessel and other operating parameters. As a result, although as much as 32 million tons of used refractory materials are produced worldwide each year, only a small fraction of this is recycled.

The production of refractories from primary feedstocks generates a considerable amount of CO2, mainly because CO2 must be removed from carbonate-type feedstocks. In addition, raw materials are mainly imported to Europe. There is currently no obvious alternative - and laser devices would be an excellent solution to this problem.

Automatic sorting by laser device

Alexander Leitner, resource project Coordinator at RHI Magnesita, explains: "Refractory products can be precisely adapted to customer requirements. The optimal composition of a high temperature resistant material depends on the intended application, the manufacturing process, and the associated chemical properties of the process medium. This means that our products have very different ingredients. So we have to separate them as precisely as possible before recycling them."

Therefore, the centrepiece of the project is an automatic sorting system for used refractory materials. The laser device will be used to identify the composition of the materials used on the conveyor belt without coming into contact with them. The Laser technology comes from Laser Analytical Systems & Automation (LSA) in Aachen, a spin-off company of the Fraunhofer ILT, which focuses on the development and production of real-time laser analysis systems for industrial applications.

"At Fraunhofer ILT, we have developed an online measurement technology that allows direct analysis of metal scrap on conveyor belts and detects the composition of each scrap." Dr. Cord Fricke-Begemann, head of the Materials Analysis group at Fraunhofer ILT, said, "With this multi-element analysis, we can detect a large number of alloys. We are now transferring these findings to refractories."

The research partners expect that as a result of the findings of this project, they can increase the potential recycling share of the industry from the previous 7% to 30-90%. "We are combining the latest analytics with state-of-the-art software to address current environmental concerns." We are on track to reduce CO2 emissions in Europe by 800,000 tonnes a year." Mr Cord Fricke-Begemann said.

A new method using laser as an underwater metal cutting tool

The demand for modern demolition techniques for underwater use is also growing. For example, to increase the generating capacity of offshore wind farms, old steel frames must first be removed below sea level and then rebuilt on a larger scale.

The Fraunhofer Institute for Materials and Beam Technology (IWS) in Dresden, Germany, has now found a technical way to use lasers as an efficient, environmentally friendly and energy efficient cutting tool in water.

To cut steel and other metals below the surface of the water, IWS researchers use a short-wavelength green laser that can cut even in water. At the same time, water acts as a tool to expel the resulting melt through the incision through pressure. This eliminates power loss, additional gas lines, and other drawbacks. In the lab, this has worked.

In September 2023, IWS will present this innovative process at the SchweiBen & Schneiden Welding and Cutting Exhibition in Essen, Germany.

Cutting metal with lasers is not a new method. However, it is usually operated in a dry environment - infrared or other fairly long lasers are used to cut metal after obtaining magnification benefits.

The IWS engineers used a green laser that has a much shorter wavelength than most current industrial lasers. However, this is possible because green lasers of more than 1kW class have become available to achieve the necessary cutting power.

In the future, a blue laser version with a shorter wavelength is also expected to be easily achieved. This short-wave laser can even penetrate water without causing major damage and loss, so it can also be used in water bodies. This medium, which is abundant in the ocean, can replace the cutting gas required in dry environments, thus eliminating the need for natural gas pipelines.

Source: OFweek

Powiązane rekomendacje
  • Progress has been made in the research of single shot characterization technology for complex combination laser pulses at Shanghai Institute of Optics and Fine Mechanics

    Recently, the research team of the High Power Laser Physics Joint Laboratory at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made significant progress in the study of single shot characterization technology for complex combination laser pulses. The research team utilized an improved broadband transient grating frequency resolved optical switch technology (T...

    03-24
    Zobacz tłumaczenie
  • An innovative technology that can make light "bend"

    A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published...

    2024-11-11
    Zobacz tłumaczenie
  • New type of metasurface with adjustable beam frequency and direction

    Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for proce...

    2024-07-30
    Zobacz tłumaczenie
  • Optoma Launches Environmentally Friendly Short Focus Laser 4K Ultra High Definition Home Entertainment and Gaming Projector

    Ranked first in the global and American projection technology fields with 4K UHD and DLP ® The brand Optoma has launched Optoma UHZ35ST, a 4K ultra high definition home entertainment and gaming projector that follows the popular UHD35STx with a short focus laser. With its external power supply and various functional upgrades, UHZ35ST provides higher reliability, portability, and energy e...

    2023-09-19
    Zobacz tłumaczenie
  • French researchers develop spiral lenses with optical vortex effects

    As humans stand at the forefront of a new era of space exploration, the National Laboratory of the International Space Station is taking the lead in carrying out a groundbreaking initiative that may completely change the way we understand and utilize space for research and development. In a recent development, Northrop Grumman's 20th commercial supply service mission has become an innovative light...

    2024-02-17
    Zobacz tłumaczenie