Polski

The latest progress in laser chip manufacturing

120
2024-07-29 15:05:12
Zobacz tłumaczenie

Modern computer chips can construct nanoscale structures. So far, only these tiny structures can be formed on top of silicon chips, but now a new technology can create nanoscale structures in a layer beneath the surface. The inventor of this method stated that it has broad application prospects in the fields of photonics and electronics, and one day, people can manufacture 3D structures on the entire silicon wafer.

This technology relies on the fact that silicon is transparent to certain wavelengths of light. This means that a suitable laser can pass through the surface of the wafer and interact with the underlying silicon. However, designing a laser that can penetrate the surface without causing damage and can also perform precise nanoscale manufacturing underneath is not simple.

Researchers at Birkent University in Ankara, Türkiye, achieved this goal by using spatial light modulation to create needle shaped laser beams, so as to better control the distribution position of beam energy. By utilizing the physical interaction between laser and silicon, they are able to manufacture lines and planes with different optical properties, which can be combined to create nanophotonic elements beneath the surface.
The use of lasers for manufacturing inside silicon wafers is not a new phenomenon. But Onur Tokel, assistant professor of physics at the University of Kent who led the research, explained that so far, only micrometer scale structures have been produced. He said that extending this method to the nanoscale can unleash new capabilities, as it can create features that are comparable in size to the wavelength of the incident light. When this happens, these structures exhibit a range of novel optical behaviors, which makes it possible to manufacture metamaterials and metasurfaces, among other things.

Silicon is the cornerstone of electronics, photonics, and photovoltaic technology, "Tokel said. If we can introduce additional functionalities inside the nanoscale wafer to supplement these existing functionalities, it will bring a completely different paradigm. Now you can imagine doing things in volume, and even potentially in three-dimensional space. We believe this will open up exciting new directions.

Previous technologies were unable to manufacture at the nanoscale because once the laser enters the silicon, it scatters and it is difficult to deposit energy accurately. In a paper published in the journal Nature Communications, Tokel's team demonstrated that they can solve this problem by using a special laser called Bessel beam, which does not undergo diffraction. This means that lasers can counteract light scattering effects and maintain narrow focusing inside silicon, allowing for precise energy deposition.

When the laser is irradiated onto the wafer, tiny holes or gaps are generated in the area where the beam is focused. Tokel said that this situation has also occurred with previous methods, but the smaller gaps generated by the more tightly focused beam exhibit a "field enhancement" effect, resulting in an increase in laser intensity around them. This will change the silicon structure around the gap, further enhancing the enhancement effect and forming a self-sustaining feedback loop. The team also found that they can change the direction of field enhancement by altering the polarization of the laser.

The final result is to create a two-dimensional planar or linear structure with a minimum of 100 nanometers in the silicon wafer. The refractive index of these structures is different from the rest of the wafer, but Tokel stated that the composition of these structures is not yet fully understood. Based on previous research, he believes that the underlying crystal structure of silicon wafers may have been modified. He added that electron microscopy research should be able to clarify this in the future, but ultimately there is no need to understand the exact underlying properties of these structures to create useful nanophotonic components.

To demonstrate this, researchers have developed a nanoscale photonic device called a Bragg grating, which can be used as an optical filter. According to the team, this is the first functional nanoscale optical component completely buried in silicon.

Maxime Chambonneau, a researcher at the University of Jena in Germany, said that it is remarkable that researchers were able to achieve nanoscale features, as the relatively long laser pulses used by the Tokel team typically create large heat affected zones, leading to microscale variations. The Bilkent team uses pulses in nanoseconds, while other direct laser writing works traditionally involve picosecond or femtosecond lasers. Chambonneau suggests that creating features smaller than light waves could bring various possibilities, including improving the energy harvesting capability of solar cells.

Due to the fact that this manufacturing technology does not cause any changes to the wafer surface, Tokel stated that in the future, this technology can be used to manufacture multifunctional devices, with electronic components located on the surface and photonic components buried underneath. The team is still investigating whether this method can be used to carve microfluidic channels beneath the surface of chips. Tokel stated that pumping fluid through these channels can improve heat dissipation, thereby helping to cool electronic devices and make them run faster.

Tokel stated that the biggest limitation of this method is that researchers cannot precisely control the location of voids in specific areas. Currently, a small portion of voids are unevenly distributed in the area where the laser beam is focused. Tokel stated that if they could more accurately locate these voids, they could perform nanomachining in three-dimensional space, rather than simply producing lines or planes.
If you can individually control these things and distribute them like chains, then this will be very exciting in the future, "he added. Because in this way, you will have more control, which will make richer elements or systems possible.

Source: Semiconductor Industry Observation

Powiązane rekomendacje
  • The Institute of Physics, Chinese Academy of Sciences has made significant progress in the research of lithium niobate nanooptics

    In recent years, breakthroughs in the preparation technology of lithium niobate single crystal thin films have greatly promoted the important application of lithium niobate crystals in micro nano optical devices such as optical metasurfaces. However, the high hardness and inactive chemical properties of lithium niobate crystals pose significant challenges to micro nano processing; In addition, con...

    04-15
    Zobacz tłumaczenie
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    Zobacz tłumaczenie
  • Researchers have placed photon filters and modulators on standard chips for the first time

    Researchers at the University of Sydney combined photon filters and modulators on a single chip, enabling them to accurately detect signals on the broadband RF spectrum. This work brings photonic chips closer to one day, potentially replacing larger and more complex electronic RF chips in fiber optic networks.The Sydney team utilized stimulated Brillouin scattering technology, which involves conve...

    2023-12-26
    Zobacz tłumaczenie
  • The breakthrough of coherent two-photon lidar overcomes distance limitations

    Schematic diagram of experimental setupNew research has revealed advances in light detection and ranging technology, providing unparalleled sensitivity and accuracy in measuring the distance of distant objects.This study was published in the Physical Review Letters and was the result of a collaboration between Professor Yoon Ho Kim's team at POSTECH in South Korea and the Center for Quantum Scienc...

    2023-12-08
    Zobacz tłumaczenie
  • New nanophotonic circuits demonstrate the potential of quantum networks

    The Purdue University team in the United States has captured alkali metal atoms (cesium) in integrated photonic circuits, which can serve as transistors for photons (the smallest energy unit of light). These captured atoms demonstrate for the first time the potential of cold atom integrated nanophotonic circuits to construct quantum networks. The research results were published in the latest issue...

    2024-08-14
    Zobacz tłumaczenie