Polski

Japan and Germany jointly develop ultra high speed laser material deposition technology

122
2024-10-25 11:12:09
Zobacz tłumaczenie

Makino Machine Tool Company, headquartered in Tokyo, Japan, and Fraunhofer Institute for Laser Technology (ILT), headquartered in Aachen, Germany, have collaborated to combine ultra-high speed laser material deposition (EHLA) and near net shape additive manufacturing (EHLA3D) with a five axis CNC platform. The new system developed can efficiently produce, coat, or repair complex geometric shapes of high-strength materials, shorten production time, and potentially extend the life of key components of high-value equipment, including large aircraft.

 


In order to integrate ultra high speed laser material deposition technology into a five axis CNC platform, the Fraunhofer Laser Technology Research Institute and Makino Company have achieved fast dynamic movement of the machining head based on kinematic research, allowing flexible processing of various geometric shapes and coating of components with various materials.

The task of Makino Company in this project is not limited to the hardware of CNC machine tools, but also includes a complete redesign of process control methods. The difficulty lies in technically adapting the machine tools to high acceleration, optimizing process control and machine kinematics, and accurately controlling the interaction between laser beams and materials. The machine tool developed by Makino Singapore subsidiary achieves an effective feed rate of up to 30 meters per minute, which is significantly improved compared to traditional systems. This speed is particularly advantageous when processing large and complex components, as it can significantly shorten processing time.

With decades of experience in laser metal deposition (LMD) processes and component development, the Fraunhofer Institute of Laser Technology has optimized the process parameters for processing various materials, including adjusting laser parameters, fine-tuning powder feeding, and optimizing the motion control of CNC machine tools. The feeding rate and powder gas injection are used to control the heat introduced into the materials. By adjusting the feed rate and powder mass flow rate, precise control of heat input can be achieved, reducing the heat affected zone and ensuring uniform coating quality. In addition, by using high feed rates and optimized powder feed, the deposition efficiency of material applications can be significantly improved with the same or even higher precision, thereby enhancing the overall efficiency of the production process.

In addition to additive manufacturing applications, this new system also has the potential to be applied in the field of maintenance. For many expensive components with minor defects that must be replaced, Makino's flexible system with rotating and tilting workbenches can provide maintenance services, saving the cost of new products, avoiding transportation and delivery time, and minimizing downtime. A key aspect of future development is to identify and validate new application areas for Near Net Shape Additive Manufacturing (EHLA3D) processes, particularly in the application of multi material systems and the production of fine structures.

Source: Yangtze River Delta Laser Alliance

Powiązane rekomendacje
  • Creating Laser Sensors with Soap Bubbles: Discovery of Game Changing Rules

    Scientists from the University of Ljubljana in Slovenia have made groundbreaking discoveries and discovered a new innovative application of soap bubbles. By transforming these seemingly simple entities into laser sensors, they unleash the potential to detect electric fields and pressures. This extraordinary development has opened the door to various possibilities.Researchers at the University of L...

    2023-11-20
    Zobacz tłumaczenie
  • Researchers have developed a new type of frequency comb that is expected to further improve the accuracy of timing

    The chip based device, known as the frequency comb, measures the frequency of light waves with unparalleled accuracy, completely changing timing, detection of exoplanets, and high-speed optical communication.Now, scientists and collaborators from the National Institute of Standards and Technology in the United States have developed a new method for manufacturing combs, which is expected to improve...

    2024-03-15
    Zobacz tłumaczenie
  • Sivers will develop laser arrays for artificial intelligence and deliver prototypes in 2024

    Sivers Optics, a subsidiary of Sivers Semiconductors, has signed a product development agreement with an undisclosed company.Starting from the initial contract worth $1.3 million, the prototype will be delivered in 2024, and it is expected that the agreement will grow rapidly in 2025 before transitioning to mass production. After entering full production, customers expect the annual chip productio...

    2024-03-18
    Zobacz tłumaczenie
  • Nankai University makes progress in the field of free electron photon interactions

    Recently, a research team led by Professor Cai Wei and Professor Xu Jingjun from the School of Physical Sciences at Nankai University has experimentally confirmed for the first time the generation of polaritons, also known as Smith Purcell radiation, at the two-dimensional scale, and further demonstrated the ability of free electrons to regulate two-dimensional Smith Purcell radiation. The researc...

    02-11
    Zobacz tłumaczenie
  • A research team at City University of Hong Kong has developed a multispectral, ultra-low dose photoacoustic microscope system

    Optical resolution "photoacoustic microscope is a new biomedical imaging technology, which can be used in the research of cancer, diabetes, stroke and other diseases. However, insufficient sensitivity has always been a long-term obstacle to its wider application.According to Maims Consulting, a research team from City University of Hong Kong (CityU) has recently developed a multispectral, ultra-lo...

    2023-09-21
    Zobacz tłumaczenie