Polski

Research Progress: Extreme Ultraviolet Photolithography

230
2024-12-09 14:02:28
Zobacz tłumaczenie

Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy and lower defect rates than previous lithography methods.

Recently, Dimitrios Kazazis, Yasin Ekinci, and others from the Paul Scherrer Institute in Switzerland published an article in Nature Reviews Methods Primers, comprehensively exploring the technological evolution from deep ultraviolet to extreme ultraviolet (EUV) lithography, with a focus on innovative methods for source technology, resist materials, and optical systems developed to meet the strict requirements of mass production.

Starting from the basic principles of photolithography, the main components and functions of extreme ultraviolet EUV scanners are described. It also covers exposure tools that support research and early development stages. Key themes such as image formation, photoresist platforms, and pattern transfer were explained, with a focus on improving resolution and yield. In addition, ongoing challenges such as random effects and resist sensitivity have been addressed, providing insights into the future development direction of extreme ultraviolet lithography EUVL, including high numerical aperture systems and novel resist platforms.

The article aims to provide a detailed review of the current extreme ultraviolet lithography EUVL capabilities and predict the future development and evolution of extreme ultraviolet lithography EUVL in semiconductor manufacturing.

 



Figure 1: Basic steps of photolithography process.



Figure 2: Extreme ultraviolet scanner and its main components.



Figure 3: Process window of photoresist.



Figure 4: Contrast curve of chemically amplified resist exposed to extreme ultraviolet light.



Figure 5: Typical faults in photolithography patterning of dense line/spacing patterns and contact hole arrays.



Figure 6: In 2025-2026, with the high numerical aperture, NA systems will enter mass production of high-volume manufacturing (HVM). In the next decade, lithography density scaling will continue to increase.



Figure 7: Chip yield curves plotted as a function of source power divided by dose for high numerical aperture NA and low numerical aperture NA extreme ultraviolet scanners.

Source: Yangtze River Delta Laser Alliance

Powiązane rekomendacje
  • The acoustooptic modulation of gigawatt level laser pulses in ambient air can be applied to other optical components such as lenses and waveguides

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam.The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale las...

    2023-10-12
    Zobacz tłumaczenie
  • Creating Laser Sensors with Soap Bubbles: Discovery of Game Changing Rules

    Scientists from the University of Ljubljana in Slovenia have made groundbreaking discoveries and discovered a new innovative application of soap bubbles. By transforming these seemingly simple entities into laser sensors, they unleash the potential to detect electric fields and pressures. This extraordinary development has opened the door to various possibilities.Researchers at the University of L...

    2023-11-20
    Zobacz tłumaczenie
  • Advancing Astronomy: Using Laser Guided Star Adaptive Optics to Obtain clearer celestial views

    Adaptive optics is defined as an advanced optical system used to correct the transmission medium between the subject and the image, providing users with clearer images. Adaptive optics helps to use a complex combination of deformable mirrors to correct images in real-time through distortion in the Earth's atmosphere. These images are of greater importance in many vertical industries such as health...

    2024-02-22
    Zobacz tłumaczenie
  • Laser communication is expected to completely change optical links

    Laser technology is becoming a game changer in the field of satellite communication (SATCOM), capable of creating ultra secure networks that can transmit large amounts of data at unprecedented speeds through satellite networks and constellations.With continuous progress, the industry is ready for growth and collaboration, seizing the untapped potential of disconnected populations. The ability to h...

    2023-09-20
    Zobacz tłumaczenie
  • Research progress on aerospace materials and anti ablation coatings: a review

    India B R. Dr. Jalandal Ambedkar National Institute of Technology and the Indian Institute of Technology reviewed and reported on the research progress of aerospace materials and anti ablation coatings. The related paper was published in Optics&Laser Technology under the title "Progress in aerospace materials and ablation resistant coatings: A focused review".a key:1. A comprehensive overview ...

    2024-11-21
    Zobacz tłumaczenie