Polski

Siemens will provide Rolls Royce with aerospace additive manufacturing components

253
2024-12-13 11:42:09
Zobacz tłumaczenie

Recently, Siemens Energy's Materials Solutions division (hereinafter referred to as Siemens) officially signed a cooperation agreement with Rolls Royce, a well-known enterprise in the field of aviation engines in the UK, agreeing that Siemens will develop and supply mass-produced additive manufacturing components for Rolls Royce's civil aerospace business.

Rolls Royce and 3D Printing Technology
Rolls Royce has a long history of using additive manufacturing technology.
In 2013, the company had planned to use 3D printing technology to manufacture parts for its jet engines, in order to accelerate production speed and manufacture more lightweight components.

In 2015, the company collaborated with the UK Additive Manufacturing Center to produce the largest civil aviation engine component at the time using 3D printing technology; In the same year, the company used 3D printing technology to manufacture aviation parts, which were already used in the latest Trent XWB-97 engine at the time and made their first test flight on the Airbus A380.

In 2019, the company announced SLM Solutions' SLM ® The 5004 laser equipment is designated for additive manufacturing development by the company.

The history of cooperation between Rolls Royce and Siemens
The new agreement between Siemens and Rolls Royce aims to expand the mass production scale of additive manufacturing, enabling the development of cutting-edge, lightweight, and high-performance components for commercial flight. This collaboration is an important milestone for Siemens' additive manufacturing business, as it further expands the application of the company's additive manufacturing technology in the aerospace industry.

It is worth mentioning that this cooperation is not the first major transaction between Siemens and Rolls Royce. As early as 2014, both parties had already engaged in significant transactions.

In 2014, Siemens Energy acquired Rolls Royce's natural gas turbine and compressor business for £ 785 million. Afterwards, both parties also signed a long-term contract allowing Siemens to continue using Rolls Royce technology to develop more efficient gas turbines. This 25 year technology licensing agreement will give Rolls Royce an additional £ 200 million.

Subsequently, in the transaction between the two parties in June 2019, the acquiring entity was changed to Rolls Royce. In June 2019, Rolls Royce announced an agreement with Siemens to acquire its electric and hybrid electric aviation propulsion business, eAircraft, to accelerate its electrification strategy.

The demand for 3D printing in the aerospace industry is growing rapidly
3D printing technology in the aerospace industry is renowned for its efficiency and ability to produce innovative prototypes, and has been one of the largest demand markets for 3D printing technology due to its alignment with the Green Aviation initiative aimed at reducing the aviation environmental footprint.

According to the research report on the aerospace additive manufacturing market by Research and Markets, the global market size for 3D printing in the aerospace industry is expected to reach approximately $3.26 billion in 2024, with a compound annual growth rate (CAGR) of 18.8% from 2025 to 2033, and a market size of $15.35 billion by 2033.

Write at the end
The cooperation between Siemens and Rolls Royce once again confirms the development prospects of 3D printing technology in the aerospace industry. Whether it is the high-performance requirements for structural components in the lightweight development trend of civil aviation aircraft, or the high-temperature alloy processing difficulties faced in the field of aviation engines, they can all be solved through 3D printing technology. I believe that with the diversification of 3D printing materials and the development of additive manufacturing equipment, additive manufacturing technology will achieve breakthrough applications in a wider range of aviation fields.

Source: Yangtze River Delta Laser Alliance

Powiązane rekomendacje
  • 20 million dollars! Undersea fiber optic agreement reached, fully operational by 2026

    Recently, Confluence Networks LLC has announced a long-term partnership agreement with Laser Light Communications Inc., a developer and provider of software controlled optical network services.According to the agreement, Laser Light will adopt Confluence-1 submarine fiber optic network, which Confluence Networks is about to launch, as the core part of its global network. The protocol will last for...

    2024-05-24
    Zobacz tłumaczenie
  • The Innovation Road of Laser Welding Automation Production Line for New Energy Vehicle Motor stators

    With the increasing global attention to environmental protection and sustainability, new energy vehicles have become an important trend in the automotive industry. In this context, the production method of the core component of new energy vehicles - the motor stator - has also undergone profound changes. Welding, as a key manufacturing process, has brought disruptive innovation to the manufacturin...

    2024-02-28
    Zobacz tłumaczenie
  • QBeam launches innovative window ablation laser system to achieve free space optical communication

    QBeam is a leader in developing breakthrough optical products and announced today that its handheld laser ablation equipment is fully launched for free space optical communication in indoor office locations. The qBeam window ablation laser allows for the installation of optical communication terminals indoors by treating windows that otherwise block the infrared beams of the terminals.Commercial b...

    2024-02-15
    Zobacz tłumaczenie
  • 2Pi Optics has launched a new type of fisheye camera based on its so-called metasurface optics

    2Pi Optics has launched a new type of fisheye camera based on its so-called metasurface optics.The company plans to showcase this technology at the large-scale technology trade show CES 2024 in Las Vegas next week.This company, headquartered in Cambridge, Massachusetts, stated that it has created the world's leading high-resolution fisheye sensor based on optical superlens technology. This technol...

    2024-01-05
    Zobacz tłumaczenie
  • Tiedra Famaceutica uses Macsa ID's SPA2 CB laser marking system

    Tiedra Famaceutica was founded by members of the Tiedra family in 2003 and is a manufacturer of contact lenses, health and ophthalmic products, as well as diagnostic instruments used in optometry and ophthalmic clinics.Before installing the SPA2 CB laser model for Macsa id, Tiedra used a pantograph, which is a quadrilateral system composed of hinged rods. This manual process provides limited marki...

    2023-12-14
    Zobacz tłumaczenie