Polski

Trends and Reflections on the Laser Industry in 2025

647
2025-01-02 16:19:01
Zobacz tłumaczenie

In 2024, the laser industry will still reach new heights, although some predicted concerns have been fulfilled! From beginning to end, the development path of the manufacturing industry has been full of uncertainty, but as time passes and we enter a new year, new technologies continue to emerge like mushrooms after rain.

In 2025, practitioners in the laser and manufacturing industries still face many challenges.
The turbulent international situation in Europe and America, as well as the threat of various geopolitical conflicts, will lead to supply chain restructuring, major changes in the automotive manufacturing industry, and a glimmer of hope for the semiconductor industry
With the increasingly fierce competition in the industry, words such as "internal competition", "reshuffling", and "cold winter" will continue to be heard throughout the year. Every enterprise in the laser industry chain is striving to explore new paths, striving to break through and protect themselves in the era of great change.

Looking back at 2024 and looking ahead to 2025, what industry trends are worth paying attention to?
According to the latest research data from Optech Consulting, it is expected that the global laser material processing equipment market will reach $23 billion by 2024.



Image source: Optech Consulting
From the chart, the market size has decreased by 1% to 5% compared to the historical high of $23.5 billion set in 2023.
Geographically speaking, only a few markets have shown growth this year, while demand in the European and American markets has declined, while the Chinese market has remained stable with no significant upward or downward trend.

From an application perspective, market growth is gradually shifting from macro processing to micro processing. Prior to this, the market demand for laser precision machining equipment had experienced a two-year slump, but this year the demand has rebounded. In contrast, the cutting equipment market has declined for the second consecutive year, while the growth rate of the laser welding market has slowed down due to the maturity of China's new energy vehicle market.

Based on existing information and overall trends, the market trend of the laser industry in 2024 is expected to continue until early 2025, with precision machining continuing to strengthen and the macro machining sector also expected to continue to decline.

In addition to laser processing, other fields are also emerging. Thanks to the rapid development of artificial intelligence, photonics is gradually moving towards the semiconductor field. When will it enter the PCB level or even chip level applications? The answer seems to be now.

It is reported that billions of dollars have been invested in companies that are driving photonics towards PCB and chip levels by 2024. For example, in October, Google Ventures invested $400 million in Lightmatter, with the ultimate goal of elevating photonics to the level of processors. Now it seems that the industry is actively embracing photon interconnect technology, aiming to break through the speed and bandwidth limitations of traditional electronic interconnects.

Beyond the aforementioned fields, laser fusion is also a frequently mentioned term this year. However, true commercialization is still some time away. Multiple rounds of investments were made in global nuclear fusion startups in 2024, but the amounts were mostly in the millions of dollars. These funds are sufficient to support the construction of other laser facilities, but they are far from enough for laser fusion testing facilities.
Although NIF has made good progress this year and is expected to achieve an output of 5.2MJ by 2024, it still faces many problems: which laser fusion process will achieve net gain, that is, the energy generated exceeds the energy required by the laser? What is the goal of mass production?

To address this, we first need a pump laser that is larger and more efficient than any product we currently have, and optical devices that can withstand long-term high-power, high-energy, and high-intensity operations. Germany is currently conducting research and development on the above-mentioned projects, preparing necessary components for laser fusion power plants, developing more efficient laser diodes, and efficient manufacturing technologies.

At the industrial level, TRUMPF, Jenoptik, Laserline, and AMS OSRAM are involved; At the research level, ILT and FBH are also involved.
Although the actual laser process for nuclear fusion has not yet been defined, lasers and optical devices used for nuclear fusion may soon contribute to the profits of their manufacturers.

In addition, laser communication, quantum technology, and the application of laser technology in the field of new energy are expected to see significant development and breakthroughs by 2025.

Source: Yangtze River Delta Laser Alliance

Powiązane rekomendacje
  • 3D printed nanocellulose for green building applications

    The hydrogel material made of nano cellulose and algae was tested as an alternative and more environmentally friendly building material for the first time. This study from Chalmers Institute of Technology and the Wallenburg Wood Science Center in Sweden demonstrates how to 3D print rich sustainable materials into various building components, using much less energy than traditional building methods...

    2024-02-19
    Zobacz tłumaczenie
  • Purchase Atomstack S20 Max 657W laser engraving machine from CAFAGO for 20 euros

    Want to unleash your creativity with cutting-edge laser engraving machines? The new Atomstack S20 Max 20W laser engraving machine is your perfect choice! With a series of groundbreaking features and larger creative space, this machine's beast will completely change your laser carving experience.Farewell to restrictions! The Atomstack S20 Max has a wide working area of 850 * 400mm, and can easily m...

    2023-11-11
    Zobacz tłumaczenie
  • New types of lenses in optics: Researchers develop hybrid achromatic lenses with high focusing efficiency

    Researchers at the University of Illinois at Urbana Champaign have developed compact visible wavelength achromatic mirrors using 3D printing and porous silicon, which are crucial for miniaturization and lightweight optical devices. These high-performance hybrid micro optical devices can achieve high focusing efficiency while minimizing volume and thickness. In addition, these microlenses c...

    2023-12-11
    Zobacz tłumaczenie
  • Each unit of metamaterials used for simulating optical calculations is smaller than the wavelength of the light they are designed to manipulate

    The new architecture based on metamaterials provides a promising platform for constructing large-scale production and reprogrammable solutions that can perform computational tasks using light.The idea of simulating computers - a device that uses continuous variables instead of zero sum ones - may evoke outdated machinery, from mechanical watches to bomb sight devices used in World War II. But emer...

    2024-03-30
    Zobacz tłumaczenie
  • The output power of high power femtosecond laser breaking through the key bottleneck of average power can reach the order of 100 watts

    High energy, high average power femtosecond laser due to the attosecond high order harmonic generation, precision processing and manufacturing, biomedical and national defense and other fields of extensive application needs, is the forefront of ultrafast super laser technology research in the past decade.Especially fiber laser due to stable and reliable operation characteristics, compact structure...

    2023-09-04
    Zobacz tłumaczenie