Português

Shanghai Institute of Optics and Mechanics has made progress in studying the structure and properties of aluminum phosphate glass

473
2023-09-15 15:19:48
Ver tradução

Recently, Hu Lili, a research team of the High Power Laser Unit Technology Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics, used a method combining experiment, molecular dynamics simulation and quantitative structure property relationship analysis (QSPR) to study aluminum phosphate glass, and the related research results were published in the Journal of the American Ceramic Society.

At present, aluminum phosphate glass is widely used in many fields, including biomedical materials, optical components, sealing materials, and nuclear waste solidification. There have been many studies on the short range structure of aluminum phosphate glass through experimental techniques, but the relationship between its properties and the medium range structure is still unclear. Molecular dynamics simulation has become an effective tool for research, playing an increasingly important role in revealing the structural origins of glass properties.

In this study, researchers combined experimental and molecular dynamics simulation methods to study the effect of Al2O3 on the short and medium range structures of aluminum phosphate glass, and established its structural property model using QSPR method. The accuracy of the simulation was verified through experimental results such as Raman and synchrotron radiation.

The simulation results indicate that the P-O-P bonds present in the glass network are gradually replaced by P-O-Al bonds as the Al2O3 content changes, playing an important role in the performance changes of the glass. Meanwhile, the long chains in aluminum phosphate glass are prone to form circular structures and are concentrated in the 4 to 20 membered rings. In addition, the QSPR model was established using three different structural descriptors and successfully correlated experimental data with simulation results, demonstrating good model predictability. This method provides new ideas for predicting glass properties and designing glass components.

Figure 1 establishes a quantitative structure performance relationship model using the (a) coordination number (CN), (b) Qn, and (c) ring size of aluminum phosphate glass as structural inputs. The columns from left to right show the relationship between the structural descriptor Fnet and experimental density, hardness, glass transition temperature, and thermal expansion coefficient, respectively.

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Recomendações relacionadas
  • China University of Science and Technology has made progress in the study of the regulatory mechanism of thermally induced delayed fluorescence

    Recently, Professor Zhou Meng's research group at the University of Science and Technology of China collaborated with Professor Fu Hongbing's team at the Capital Normal University to reveal the mechanism by which aggregation effects regulate the luminescent properties of thermally delayed fluorescent materials. The research findings, titled "Aggregation Enhanced Thermally Activated Delayed Fluoros...

    2024-06-28
    Ver tradução
  • Laser Photonics Corporation receives MF-1020 order

    Recently, Laser Photonics Corporation (LPC) announced that it has partnered with Foon Technologies to receive its second order for the DefenseTech MRL (MF-1020) handheld cleaning system, which was facilitated by a distributor.The DTMF-1020 air-cooled handheld pulse laser cleaning equipment adopts dual axis technology, simplifying the maintenance process. The system will be used by the Navy Command...

    02-27
    Ver tradução
  • Southern Stoneworks revolutionizes countertop installation in Orlando with innovative laser technology

    A good countertop can make a home better. In that spirit, Southern Stoneworks, Orlando's leading countertop manufacturer and installer, has set a new standard in the industry by incorporating advanced laser technology into its processes. Utilizing state-of-the-art laser-guided saws and tools, the company has significantly reduced the time required to measure, manufacture, and install kitchen count...

    2023-08-04
    Ver tradução
  • The acoustooptic modulation of gigawatt level laser pulses in ambient air can be applied to other optical components such as lenses and waveguides

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam.The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale las...

    2023-10-12
    Ver tradução
  • 3D printed nanocellulose for green building applications

    The hydrogel material made of nano cellulose and algae was tested as an alternative and more environmentally friendly building material for the first time. This study from Chalmers Institute of Technology and the Wallenburg Wood Science Center in Sweden demonstrates how to 3D print rich sustainable materials into various building components, using much less energy than traditional building methods...

    2024-02-19
    Ver tradução