Português

Scientists at St. Andrews University have made significant breakthroughs in compact laser research

455
2023-10-04 14:21:35
Ver tradução

Scientists at St. Andrews University have made significant breakthroughs in compact laser research after decades of hard work.


Laser is widely used in fields such as communication, medicine, measurement, manufacturing, and measurement around the world. They are used to transmit information on the internet, for medical purposes, and even in facial scanners on mobile phones. Most of these lasers are made of rigid and brittle semiconductor crystals such as gallium arsenide.

Organic semiconductors are a relatively new type of electronic material. They have flexibility, are based on carbon and emit visible light, making the manufacturing of electronic devices simple. They are now widely used in OLED (Organic Light Emitting Diode) screens in most mobile phones.

One limitation of organic semiconductor lasers is that they typically require another laser to power them. For 30 years, researchers have been working hard to overcome this limitation, so scientists at the University of St. Andrews have recently developed an electrically driven organic semiconductor laser, which is particularly important.

The breakthrough achieved by the team, published in the journal Nature, first produced OLEDs with world record light output, and then tightly integrated them with polymer laser structures. This new type of laser emits a green laser beam composed of short light pulses.


At present, this is mainly a scientific breakthrough, but with future development, lasers may be integrated with OLED displays and allow communication between them, or used for spectroscopy to detect diseases and environmental pollutants.

Schematic diagram of the structure of an electrically driven organic semiconductor laser


Professor Ifor Samuel commented, "Manufacturing electrically driven lasers using organic materials is a huge challenge for researchers around the world. Now, after years of effort, we are pleased to have produced this new type of laser.


Professor Graham Turnbull added, "We hope that this new type of laser will consume less energy during the manufacturing process and will produce visible spectrum lasers in the future.

Source: Laser Network

Recomendações relacionadas
  • South Korean DE&T will open new subsidiaries in the United States and Canada

    Recently, DE&T, a South Korean manufacturer of secondary batteries and display laser equipment, announced that the company will further expand its overseas business by opening new subsidiaries in the United States and Canada. According to its claim, this move is to carry out maintenance services for laser equipment locally. As of now, DE&T's overseas subsidiaries have increased from two to...

    04-08
    Ver tradução
  • Safran Group believes that additive manufacturing is playing an increasingly important role in engines

    Safran Group showcased a 3-foot diameter turbine aft casing manufactured using additive manufacturing technology under the RISE technology program at the Paris Air Show in recent years. This component is Safran's largest additive manufacturing component to date, indicating the increasingly widespread application of additive manufacturing in the design and manufacturing of turbofan engines. In ea...

    06-18
    Ver tradução
  • AWOL Vision will showcase cutting-edge laser projectors and award-winning innovations at CEDIA 2023

    AWOL Vision has announced that it will be showcasing the latest innovations in home entertainment at this year's CEDIA Expo in Denver, Colorado from September 7-9.At the show, AWOL Vision will debut the new LVV-3000 Pro and LVV-3500 Pro laser projectors with Dolby Vision and Control4 integration, and will showcase the latest Vanish TV, The TV recently received the prestigious "IFA 2023 Best of the...

    2023-09-08
    Ver tradução
  • Diamond Light Source and NPL reach a new five-year agreement

    Recently, two leading UK scientific institutions, Diamond Light Source and National Physical Laboratory (NPL), have reached a new five-year agreement to promote joint collaborative efforts.The agreement was approved by signing a Memorandum of Understanding (MoU), which will bring these two institutions together.Diamond Light Source is a national synchrotron facility in the UK known for generating ...

    2024-04-25
    Ver tradução
  • Progress in Research on Transparent Ceramics for 3D Printing Laser Illumination at Shanghai Institute of Optics and Mechanics

    It is reported that the Research Center for Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research of additive manufacturing (3D printing) transparent ceramics for laser illumination.Recently, the Research Center for Infrared Optical Materials of the Shanghai Institute of Optics and Precision Mechanics, Chines...

    2023-10-17
    Ver tradução