Português

Creating Laser Sensors with Soap Bubbles: Discovery of Game Changing Rules

156
2023-11-20 14:22:03
Ver tradução

Scientists from the University of Ljubljana in Slovenia have made groundbreaking discoveries and discovered a new innovative application of soap bubbles. By transforming these seemingly simple entities into laser sensors, they unleash the potential to detect electric fields and pressures. This extraordinary development has opened the door to various possibilities.

Researchers at the University of Ljubljana use regular hand sanitizers or bubble mixtures suitable for children to create bubble lasers. By adding a small amount of fluorescent dye to the mixture, they can generate laser light from within the bubbles. Unlike traditional lasers that rely on mirrors for amplification, the internal volume of bubbles becomes a decisive factor in this new laser technology. This unique characteristic provides the necessary space for light to reflect back and forth, which is a key component of lasers.

The addition of fluorescent dyes enables bubbles to be used as amplifiers of light. When illuminated, the dye emits light, forming the basic components required for laser generation. Researchers use optical fibers and focusing lenses to guide external light onto bubbles. This triggers the bubble to generate its own laser.

An important aspect of this breakthrough is the extraordinary sensitivity of bubble lasers. They can detect pressure changes as small as 0.001% of atmospheric pressure. Even without thunderstorms generating electricity, they can sense the electric field in the atmosphere on clear days.

The application of this technology is extensive and exciting. The team creatively combined "micro ring lasers" together, opening up new possibilities for future development. The results of this discovery have sparked the interest and enthusiasm of experts in the field, who believe that it may lead to the emergence of various new applications.

FAQ:
Q: How do researchers convert soap bubbles into laser sensors?
Answer: Researchers added a small amount of fluorescent dye to ordinary hand sanitizers or bubble mixtures suitable for children, creating a medium for laser generation.

Q: How does a bubble laser work?
Answer: The internal volume of the bubble, coupled with the addition of fluorescent dyes, allows the bubble to serve as an amplifier of light. External light triggers bubbles to generate their own laser.

Q: What are the unique features of these bubble lasers?
Answer: Bubble lasers have unprecedented sensitivity and can detect pressure changes as low as 0.001% of atmospheric pressure. Even on sunny days, they can sense electric fields in the atmosphere without generating electricity from thunderstorms.

Q: What are the potential applications of bubble lasers?
Answer: This discovery opens the door to a wide range of new applications that need to be explored and developed.

Source: Laser Network

Recomendações relacionadas
  • Observation of laser power changes in ultrafast protein dynamics

    When researchers at the Max Planck Institute of Medicine conducted their first ultrafast X-ray crystallographic experiment on myoglobin in 2015, they were not aware that they had conducted the wrong experiment. By increasing the power of X-ray free electron lasers to ensure usable diffraction patterns, lead researcher Ilme Schlichting said that they "suddenly entered the wrong [excited] state with...

    2024-02-28
    Ver tradução
  • Changchun Institute of Optics and Fine Mechanics has developed a high brightness HiBBEE non-uniform waveguide semiconductor laser

    High brightness semiconductor lasers have extremely important applications in fields such as laser radar. Traditional semiconductor lasers face challenges such as large vertical divergence angle, elliptical beam output, multiple lateral modes, and poor beam quality, which limit the direct application of high brightness semiconductor lasers.In response to this challenge, the team from the Bimberg S...

    03-18
    Ver tradução
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    Ver tradução
  • Progress in research on neodymium doped strontium aluminate lanthanum magnesium laser crystals by Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of Nd: ASL (Sr0.7Nd0.05La0.25Mg0.3Al22.7O19) laser crystals, and the related achievements were published in Infrared Physics&Technology under the title of "Tunable laser operations on Nd doped cont...

    2024-03-19
    Ver tradução
  • Ortel launches advanced 1550nm laser to enhance LiDAR and optical sensing functions

    Ortel belongs to the Photonics Foundries group and has launched its latest innovative product - the 1786 1550 nm laser module, aimed at significantly improving optical sensing in various applications. This laser module is designed specifically for continuous wavelength operation and is a key component of systems that require coherent light sources for precise sensing in environments with fluctuati...

    2024-03-16
    Ver tradução