Português

TAU Systems upgrades the University of Texas desktop laser to a peak power of 40 terawatts

191
2023-08-21 14:14:40
Ver tradução

TAU Systems, a manufacturer of ultra fast compact laser plasma accelerators, announced today that it has successfully upgraded the existing desktop terawatt laser (UT 3) at the University of Texas to a new and improved performance that provides power for compact particle accelerators. The upgraded UT 3 driver laser can now generate ultra short pulses with a peak power of 40 terawatts.

This upgrade is part of a collaboration between the University of Tel Aviv and the University of Texas at Austin, aimed at jointly developing the fundamental elements of laser plasma interaction, advancing the science and technology of compact accelerator systems and advanced light sources, with the goal of making these tools widely applicable to a wide range of end users and industries.

The upgraded UT 3 has almost twice the energy of its predecessor. This upgrade was jointly completed by personnel from TAU Systems and UT Austin, with the necessary components coming from Thales Laser. TAU has successfully achieved laser driven electronic acceleration in its new beam line design, demonstrating the new potential of the facility.

The system will now be used to develop compact new laser tail field accelerators, as well as EUV and X-ray light sources, for use in fields such as semiconductor industry, materials science, battery technology, medical imaging, etc.

Bjorn Manuel Hegelich, CEO of TAU Systems and Professor of UT Physics, said of the new features of UT 3, "After successfully completing this important UT 3 upgrade, we look forward to advancing the engineering frontier of laser driven particle accelerators. It will enable us to develop new imaging capabilities for both internal and external users of UT.

Professor Mike Downer, an outstanding physics professor at the University of Texas at Austin, also expressed the same view. He said, "The new research capabilities brought by this upgrade are exciting, and we look forward to further developing compact electron accelerators and 21st century X-ray sources.

Christine Dixon Thiessing, Vice President of the University of Texas at Austin, responsible for exploring influence, commented on the successful partnership between the university and TAU Systems, stating, "This successful project is a great example of public-private partnerships between the University of Texas at Austin and local cutting-edge industries, and also a great success story for a derivative company of the University of Texas at Austin.

The collaboration between TAU Systems and UT Austin highlights the importance of public-private partnerships in advancing scientific research and accelerating innovation.

This upgrade represents another important step in the commercial application of plasma tail field accelerators. TAU Systems plans to install a 100 times more powerful system at its recently acquired office in San Diego by the end of this year. The opening of this service center will create unprecedented opportunities for researchers in multiple fields, especially in the semiconductor manufacturing field, by exploring and measuring the 3D structure of semiconductors. The service center will also allow electric vehicle battery developers to conduct comprehensive research on battery charging and discharging.

Source: Laser Network

Recomendações relacionadas
  • Chip guided beam for new portable 3D printers

    Imagine being able to carry a 3D printer with you and quickly create low-cost objects, such as fastening bicycle wheels or parts needed for critical medical surgeries. Scientists from the Massachusetts Institute of Technology (MIT) and the University of Texas at Austin have combined silicon photonics and photochemical technology to successfully develop the first chip based 3D printer, taking a cru...

    2024-06-18
    Ver tradução
  • New method doubles and accelerates thermal tuning of optical chips, supporting two current and voltage regulation methods

    Silicon based quantum chip technology is one of the hot research directions in the field of integrated photonics. Thanks to compatibility with CMOS technology and silicon material characteristics, silicon-based integrated optical chips and devices have many advantages such as low cost, small size, low power consumption, and high integration, providing an ideal platform for large-scale optical comp...

    2024-04-02
    Ver tradução
  • The tesat optical terminal selected by Lockheed Martin satellite has passed ground testing

    Tesat Spacecom's laser communication terminal announced on October 26th that the company has passed critical ground testing deployed on NASA satellites.Tesat's SCOTT80 optical terminal was selected by Lockheed Martin, one of several manufacturers producing satellites for the Space Development Agency.SDA is an agency under the United States Space Force that plans to deploy a network of interconnect...

    2023-10-27
    Ver tradução
  • Application of Laser Welding Technology in Ceramic Substrate Industry

     Ultra short laser pulses for local welding (Source: Fraunhofer IOF)With the accelerated evolution of electronic devices towards high power, high frequency, and miniaturization, ceramic substrates have become core materials in fields such as power semiconductors, 5G communications, and new energy vehicles due to their excellent thermal conductivity, insulation, and high temperature resistance. H...

    03-17
    Ver tradução
  • JMP: Small hole mode swing laser welding of nickel based high-temperature alloys - simulation, experiment, and process diagram

    IntroductionThe small hole mode swing laser welding has gained increasing recognition due to its ability to bridge gaps, refine microstructures, and enhance the mechanical properties of welds. However, the effects of amplitude, frequency, welding speed, laser beam power, and beam radius on heat flux distribution, melting mode, and three-dimensional temperature field have not been well understood. ...

    04-11
    Ver tradução