Português

Optical Drive Magnetic Control: A Breakthrough in Memory Technology

100
2024-01-06 14:21:21
Ver tradução

A recent study conducted by the Hebrew University suggests an undiscovered relationship between magnetism and light. This discovery may pave the way for extremely fast optical storage technology and creative optical magnetic sensor technology.

It is expected that this discovery will completely change the way equipment is manufactured and data is stored in a range of fields.

Amir Capua, Professor and Head of the Spintronics Laboratory at the Institute of Applied Physics and Electrical Engineering at the Hebrew University of Jerusalem, reported on significant developments in the field of optomagnetic interactions. The team's surprising discovery demonstrated the process of manipulating solid magnetic states using optical laser beams, providing practical significance for a range of industries.

The discovery of neglected photomagnetic components, which are often overlooked due to the slower reaction of magnets compared to light radiation, contradicts recognized knowledge. The team's research has revealed a new theory: the ability of rapidly oscillating light wave magnetic components to manipulate magnets redefines fundamental physical interactions.

It is interesting that people have found a simple mathematical relationship between the amplitude, frequency, and energy absorption of magnetic materials to characterize the strength of interactions.

This discovery combines concepts from two scientific disciplines that previously had little in common and were closely related to the field of quantum technology. We arrived at this understanding by using principles that have been established in the quantum computing and quantum optics communities, but are less important in the spintronics and magnetism communities.

When magnetic materials and radiation are in a perfect equilibrium state, their interaction is recognized. However, so far, the situation involving radiation and imbalanced magnetic materials has only been described very briefly.

The fundamental principles of quantum computing and quantum optics were discovered in this non-equilibrium field. Using the concepts of quantum physics, we studied this non-equilibrium state in magnetic materials and demonstrated evidence of the fundamental idea that magnets can react to light at a short time scale. In addition, this kind of communication has been proven to be very meaningful and effective.

In addition, the group has also developed a unique sensor that can combine this discovery to identify the magnetic composition of light. Compared to traditional sensors, this innovative design provides adaptability and integration for a wide range of applications, which may alter sensor and circuit design to achieve different uses for light.

Mr. Benjamin Assouline, a doctoral student at the Spintronics Laboratory, conducted this study, which is crucial for this discovery. Recognizing the potential significance of their findings, the team has submitted multiple related patent applications.

The study was funded by the Israel Science Foundation, the Peter Broyd Center for Innovation Engineering and Computer Science, and the Center for Nanoscience and Nanotechnology at the Hebrew University of Jerusalem.

Source: Laser Net

Recomendações relacionadas
  • Automated methods for background estimation in laser spectroscopy

    A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the lase...

    2023-11-24
    Ver tradução
  • Coherent CEO Resigns in Restructuring

    Recently, laser giant Coherent (COHR) released an announcement.Coherent Corporation announced that President Walter R. Bashaw II will resign on September 6, 2024, due to a company restructuring that resulted in the cancellation of his position.His resignation is classified as a 'Good Reason' termination, which ensures that he will receive full severance compensation in accordance with existing com...

    2024-08-20
    Ver tradução
  • Laser beam combined with metal foam to produce the brightest X-ray

    According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dens...

    01-18
    Ver tradução
  • The Welding Application of Fiber Laser in the Food and Beverage Industry

    As is well known, food and beverage product manufacturers have strict requirements in ensuring the hygiene and cleanliness of their equipment. Once these devices and components are designed or manufactured improperly, they are likely to cause pollution, ultimately leading to health hazards, brand reputation damage, and expensive recall actions. The shortage of labor and raw materials further exace...

    2023-10-19
    Ver tradução
  • Topological high-order harmonic spectroscopy in Communications Physics

    It is reported that researchers from the University of Salamanca in Spain have demonstrated a high-order harmonic spectroscopy scheme generated by the interaction between a structured driving beam and a crystal solid target. This work promotes the topological analysis of high-order harmonic fields as a spectroscopic tool to reveal nonlinearity in the coupling of light and target symmetry. The rele...

    2024-01-15
    Ver tradução