Português

Using Topological Photon Chips to Uncover the Secrets of Open Systems

224
2024-02-02 18:08:02
Ver tradução

Conservation of energy is a fundamental concept in physics that can be used to explain anything from planetary orbits to the internal workings of individual atoms.

Energy can be converted into other forms, but the overall energy level is usually considered to vary over time. Therefore, when attempting to describe a system, physicists usually pay attention to ensuring that it is isolated from the surrounding environment.

However, if the energy gain and loss are distributed in an orderly manner, so that they cancel each other out in all possible situations, the dynamics of the system can also be stable. This can be ensured through a phenomenon called parity check time symmetry.

All components of the system are carefully arranged to exchange the gain and loss of light through simultaneous mirroring and time reversal, making the system appear unchanged, just like a video played backwards and simultaneously reflected in a mirror, but looking exactly the same as the original video, which means it is PT symmetric.

PT symmetry is not just an academic concept; On the contrary, it opens the door to a more thorough understanding of open systems.

Professor Alexander Szameit from Rostock University specializes in studying interesting physical phenomena related to PT symmetry. Laser can replicate the behavior of artificial and natural materials arranged in periodic lattice structures in their customized photonic chips, making them an excellent platform for testing various physical theories.

Therefore, Professor Szameit and his colleagues successfully integrated the ideas of topology and PT symmetry. Topology is the study of properties that remain unchanged even when the underlying system is constantly deformed. When a system possesses these qualities, it becomes particularly resistant to external influences.

Szameit's team used laser engraved photonic waveguides in their experiments, which are optical structures etched into materials by laser beams.

In these "optical circuits," so-called topological insulators are implemented.
So far, people believe that open systems and this powerful boundary state are fundamentally incompatible. Researchers from Rostock, Vilzburg, and Indianapolis have jointly demonstrated that it is possible to address the apparent paradox by dynamically allocating benefits and losses over time.

These findings may pave the way for the development of new cutting-edge circuits for transmitting sound, light, and even electricity. These findings also represent significant advances in the understanding of topological insulators and open systems.

This study was funded by the German Research Foundation and supported by the Alfred Krupp von Boren and the Halbach Foundation.

Source: Laser Net


Recomendações relacionadas
  • Leica Cine 1 laser TV with 4K display screen launched with a starting price of $8995

    Photography brand Leica has launched its first 4K movie and television. The Leica Cine 1 laser TV was announced a year later during the I FA 2022 period. This iconic photography brand is shifting some of its focus to projecting perfect images in our living room.featureThe Leica Cine 1 laser TV embodies Leica's philosophy in its camera design. Leica continues to provide precision optical engineerin...

    2023-10-19
    Ver tradução
  • Researchers enhance the signal of perovskite nanosheets

    In the field of optoelectronics, researchers from Busan National University in South Korea and the University of Oxford in the UK have successfully improved the signal amplification ability of CsPbBr3 perovskite nanosheets through innovative patterned waveguide methods, bringing new possibilities for the future of optoelectronics. This breakthrough not only has potential applications in fields suc...

    2024-02-22
    Ver tradução
  • Laser Photonics officially launches its SaberTech laser cutting system

    Recently, Laser Photonics (LPC) officially launched its SaberTech laser cutting system. This system not only enriches the product line of LPC's laser cleaning, welding, marking, and engraving systems, but also marks another important breakthrough for the company in the field of laser technology. This product release is another heavyweight measure after LPC's latest generation laser cleaning system...

    2024-06-19
    Ver tradução
  • Research on LiDAR at the University of Electronic Science and Technology of China, published in Nature

    The team from the School of Information and Communication Engineering at the University of Electronic Science and Technology of China has proposed for the first time a laser radar instrument based on the dispersion Fourier transform method, forming a new demodulation mechanism. This instrument breaks through the cross limitations of measurement speed, accuracy, and distance, and has unique advanta...

    2024-06-22
    Ver tradução
  • Shanghai Photonics Corporation has made progress in laser welding of structural materials (Ni-28W-6Cr alloy) for new-generation molten salt reactors

    Recently, Yang Shanglu, a researcher at the Laser Intelligent Manufacturing Technology Research and Development Center of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made new progress in laser welding of the fourth-generation reactor-molten salt reactor structural material Ni-28W-6Cr nickel-based superalloy.The research team applied the high power fiber ...

    2023-08-25
    Ver tradução