Português

Beijing Institute of Technology has made significant progress in the study of ultrafast carrier dynamics in optoelectronic functional crystals

117
2024-02-21 14:08:27
Ver tradução

Recently, teachers and students from the Institute of Solid State Laser and Ultrafast Photonics at the School of Physics and Optoelectronic Engineering have made significant progress in the study of ultrafast carrier dynamics in optoelectronic functional crystals. The related research results are titled "Anisotropic carrier dynamics and laser fabricated luminosity patterns on oriented single crystal perovskite wafers" and published online in the international authoritative journal Nature Communications, The research results are of great significance for promoting the practical application process of functional crystals in the field of optoelectronics.

The first author of the paper is Beijing University of Technology, with Ge Chao, an assistant researcher at the School of Physics and Optoelectronic Engineering, and Li Yachao, a doctoral student, as co first authors. Ge Chao, an assistant researcher at Beijing University of Technology, and Song Haiying, an associate researcher, are co corresponding authors. Professor Zhang Wenkai from Beijing Normal University and Professor Liu Yang from Shandong University are also co corresponding authors. This study has been supported by projects such as the National Natural Science Foundation of China and the Beijing Municipal Education Commission Research Program.

In recent years, perovskite materials and their applications in the field of optoelectronics have attracted widespread attention. However, a deep understanding of their anisotropic behavior in ultrafast carrier dynamics is still insufficient. To compensate for this deficiency, the research team, based on high-quality MAPbBr3 single crystal wafers with different orientations, for the first time revealed the polarization of photo excited charge carriers within crystal planes with different orientations and the anisotropic dynamic evolution between crystal planes at the picosecond time scale. This discovery provides a deeper understanding of the relaxation pathways of ultrafast charge carriers from a crystallographic perspective, which is of great significance for exploring and expanding the applications of perovskite single crystals in the field of ultrafast optoelectronics, such as light modulators, high-speed polarization sensors, and ballistic transistors.

In addition, by using femtosecond laser two-photon processing technology, the research team successfully prepared three orders of magnitude fluorescence enhanced luminescent patterns. An in-depth analysis of the fluorescence enhancement mechanism from the perspectives of multidimensional space (bulk and micro/nanoscale) and time (steady-state and transient) provides a convenient top-down strategy for improving the photoluminescence intensity of bulk crystals. This study provides a profound understanding of the ultrafast carrier dynamics of MAPbBr3 from a crystallographic perspective, with the hope of providing more guidance for the orientation selection and utilization of perovskite hot carriers in optoelectronics in the future.

The dynamic evolution of photo excited charge carriers on the (100), (110), and (111) crystal planes of MAPbBr3 and the mechanism of femtosecond laser-induced fluorescence enhancement.

Source: OFweek

Recomendações relacionadas
  • Research Progress: Extreme Ultraviolet Photolithography

    Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy a...

    2024-12-09
    Ver tradução
  • Scientists from the SLAC National Accelerator Laboratory in the United States have launched the world's most powerful X-ray laser

    Scientists at the SLAC National Accelerator Laboratory have launched the world's most powerful X-ray laser, which will be used for in-depth atomic and molecular research.It is a significant upgrade to its predecessor, as its brightness has increased by 10000 times.The upgraded laser facility also uses superconducting accelerator components, allowing it to operate at low temperatures near absolute ...

    2023-11-17
    Ver tradução
  • The LiDAR SLAM navigation system uses laser sensors to realize real-time 3D mapping of the environment

    Robotic lawn mowers are becoming increasingly popular due to their convenience and ability to save time and effort. Although robotic lawnmowers have made significant progress over the years, many robots still require users to lay perimeter wires to define the mowing area and remove any obstructions from the lawn to ensure the mower doesn't get stuck or damaged.Well, that's not the case with the Ne...

    2023-09-11
    Ver tradução
  • GeoCue introduces three new TrueView 3D imaging systems

    Earlier this month, GeoCue, a liDAR mapping hardware and software provider, announced the launch of three new products for its TrueView 3D imaging system. These new systems combine laser scanning and high-resolution imaging, including the TV625, TV680 and TV680LR. All three systems are NDAA-compliant.All three systems are designed to be used in conjunction with drones, and the company note...

    2023-08-04
    Ver tradução
  • XTool enables pre-sale of F1 superfiber and diode laser cutting machines

    Tool has started pre-sales for the F1 Ultra, a 20 watt fiber and diode dual laser engraving machine. OEMs have stated that it is a win-win product and its so-called "flagship" model.Fiber lasers are mainly used for metal materials and usually work faster than diode lasers, but other materials have better performance when using diode lasers. F1 Ultra aims to bridge this gap by using a power of 20W ...

    2024-05-09
    Ver tradução