Português

The Role of Active Tunable Laser in GeSn Nanomechanical Oscillator in Nat Nanotechnology

238
2024-05-14 14:31:16
Ver tradução

It is reported that researchers from Nanyang Technological University in Singapore, Federal Institute of Technology Lausanne in Switzerland, Physics Laboratory of Higher Normal University in Paris, National Center for Scientific Research in France, Sorbonne University, City University of Paris, University of Leeds in the UK, and Korean Academy of Science and Technology (KAIST) have reported on the active tunable laser effect in GeSn nanomechanical oscillators. The study was published in Nature Nanotechnology under the title "Actively tunable laser action in GeSn nanomechanical catalysts".

The mechanical force caused by high-speed oscillation provides a good method for dynamically changing the basic characteristics of materials such as refractive index, absorption coefficient, and gain dynamics. Although precise control of mechanical oscillations has been well developed in the past few decades, the concept of dynamic mechanical forces has not yet been used to develop tunable lasers. In the article, researchers demonstrated the active tunable mid infrared laser effect of a compact class IV nanomechanical oscillator. The GeSn cantilever nanobeam suspended on a silicon substrate is driven by radio frequency wave resonance. Electrically controlled mechanical oscillation can induce periodic elastic strain in GeSn nanobeams over time, thereby achieving greater than 2 μ Active tunable laser emission with m wavelength. This study proposes a wide range mid infrared tunable laser with ultra-low tuning power consumption by utilizing mechanical resonance in radio frequency as the driving mechanism.

Figure 1: Design of a GeSn nanomechanical oscillator with actively tunable laser action.

Figure 2: Experimental setup.

Figure 3: Mechanical characterization and simulation.

Figure 4: Characterization of GeSn material.

Figure 5: Laser emission characteristics of the driving oscillator.

Figure 6: Production process.

Source: Yangtze River Delta Laser Alliance

Recomendações relacionadas
  • New machine learning algorithm accurately decodes molecular optical 'fingerprints'

    Recently, a research team from Rice University in the United States developed a new machine learning algorithm - Peak Sensitive Elastic Network Logistic Regression (PSE-LR). This algorithm is adept at interpreting the unique optical characteristics of molecules, materials, and disease biomarkers, which can help achieve faster and more accurate medical diagnosis and sample analysis. The relevant pa...

    há 3 dias
    Ver tradução
  • Alcon acquires ophthalmic laser equipment company for $466 million

    On July 3rd local time, Swiss ophthalmic care giant Alcon announced the acquisition of Israeli medical technology company Belkin Vision and its laser equipment assets for treating glaucoma.The transaction includes a prepayment of $81 million, of which approximately $65 million is in cash. In addition, if Alcon can establish this technology as the preferred first-line treatment option for clinical ...

    2024-07-09
    Ver tradução
  • Micro active vortex laser

    Recently, Dong Yibo, from the Photonic Chip Research Institute of Shanghai University of Technology, published his research findings titled "Nanoprinted Diffractive Layer Integrated Vertical Cavity Surface Emitting Vortex Lasers with Scalable Topological Charge" as the first author in the internationally renowned journal Nano Letters.This achievement was jointly completed by the team of academicia...

    2023-10-24
    Ver tradução
  • Important Discovery in Aluminum Alloy Laser Coaxial Fusion Additive Manufacturing

    Aluminum alloy has unique advantages such as lightweight, high strength, and excellent corrosion resistance, and is highly favored in the aerospace manufacturing field. Laser Coaxial Fusion Additive Manufacturing (LCWAM) adopts beam shaping technology, which uses wire as the deposition material to melt and stack layer by layer. Compared to traditional side axis wire feeding technology, laser coaxi...

    2024-04-29
    Ver tradução
  • Vigo University School of Technology invents laser glass recycling system

    LaserON, a laser industrial application group at the University of Vigo, is leading a European project that aims to revolutionize the glass recycling process by developing a new technology called glass laser conversion, so that everyone can recycle at home. This group is led by Professor Juan Pou and Professor Rafael Comesa ñ a, and is part of Cintecx, leading EverGlass. Its partners come f...

    2024-01-19
    Ver tradução