Português

New laser technology can achieve more efficient facial recognition

143
2024-06-24 14:15:46
Ver tradução

Recently, the latest research report from FLEET, an interdisciplinary research team in Australia, revealed a significant leap in laser technology, achieving unprecedented levels of spectral purity.

Spectral purity, which refers to the degree of matching of a single light frequency (or color) generated by a laser, is an important indicator for measuring laser performance. By using a scanning Fabry Planck interferometer, researchers accurately measured the spectral purity of the laser and found that its linewidth was extremely narrow, only 56 MHz or 0.24 μ eV, which was ten times smaller than previous records.

This milestone progress enables polarized lasers to compete with industry-leading VCsel technology, especially in applications such as facial recognition and augmented reality. Importantly, polarized lasers not only have excellent performance, but also are more energy-efficient. Their working power is lower, thanks to their unique boson condensation state, in which light generation does not require the massive energy required by traditional lasers.

This feature has enormous potential for application in the field of biometrics, especially in facial recognition. Although vertical cavity surface emitting lasers (VCSELs) are widely used in facial recognition devices due to their high efficiency and reliability, polarized lasers provide a more energy-efficient option. Without sacrificing performance, they can make facial recognition devices more energy-efficient, which helps promote the sustainable development of related technologies.

In addition, the research report also reveals another major advantage of polarized exciton lasers: they can maintain high spectral purity even when overlapping with poorly organized particles. This used to lead to severe noise and performance degradation, but research teams have found that as long as polarons are placed in enclosed spaces, the noise generated by these particles can be minimized. This characteristic makes polarized exciton lasers more practical in various biometric systems that require reliable operation.

It is worth mentioning that the narrow linewidth of polaron lasers endows them with extremely long coherence time. Coherence time refers to the time it takes for a laser to maintain high-quality light, which is crucial for fast and continuous execution of thousands of operations, especially in advanced applications such as quantum computing. The coherence time of polaron lasers is at least 5.7 nanoseconds, which may seem brief but is sufficient to meet the needs of these advanced applications.

In summary, the research results of the FLEET team not only demonstrate the tremendous progress of laser technology, but also bring new energy-saving and efficient choices for biometric fields such as facial recognition. With the continuous development and improvement of technology, we have reason to believe that polarized lasers will lead a revolution in facial recognition technology in the future.

Source: OFweek

Recomendações relacionadas
  • Laserline introduces the first blue 4 kW laser

    Laserline will once again showcase its latest laser systems for joining and deposition welding at this year's Welding & Cutting show in Hall 5. This time the focus is on the world's first blue diode laser with an output power of 4 kW, which is said to have been developed for processing copper components.Its 445 nanometer wavelength is absorbed by copper and copper alloys, which is five t...

    2023-09-06
    Ver tradução
  • Lidar manufacturer RAYZ has completed a round A financing of nearly 100 million yuan

    Recently, RAYZ, a leading research and production company for high-performance LiDAR, announced the successful completion of the A-round financing. This round of financing was led by SMIC Juyuan, and well-known institutions such as Juntong Capital, Feitu Capital, Qiandao Investment, and Qiyu Chuangying also participated in this round of financing. The new round of financing will be used for the re...

    2023-10-20
    Ver tradução
  • Tianjin University's Photoacoustic Remote Sensing Microscopy Technology Breakthrough New Heights

    Recently, Professor Tian Zhen's team from Tianjin University has made a breakthrough in the field of photoacoustic remote sensing microscopy technology and successfully developed a new type of non-destructive testing method. This technology uses Kaplin high-power femtosecond laser as the key light source, further optimizing the solution to the internal flaw detection limitations of inverted chips,...

    2024-04-16
    Ver tradução
  • Researchers use non classical light to achieve multi photon electron emission

    Strong field quantum optics is a rapidly emerging research topic that integrates nonlinear optoelectronic emission elements rooted in strong field physics with the mature field of quantum optics. Although the distribution of light particles (i.e. photons) has been widely recorded in both classical and non classical light sources, the impact of this distribution on the photoelectric emission proces...

    2024-05-20
    Ver tradução
  • Xunlei Laser 20000W Large Format Laser Cutting Machine Winning the Bid for YD Company, a Famous Enterprise in the Steel Structure Industry

    Recently, the Xunlei Laser HI series 20000W large format laser cutting machine won the bid of YD Company, a well-known steel structure company, to help YD steel structure improve quality, efficiency, and green transformation!Established in 2009, YD Steel Structure is a large-scale specialized steel formwork enterprise that has established deep business partnerships with leading construction indust...

    2023-11-06
    Ver tradução