Português

Latest breakthrough! 3500W free output blue semiconductor laser

121
2024-09-03 13:51:31
Ver tradução

The 3500W free output blue semiconductor laser beam is output in a free space manner, with a rectangular spot directly acting on the material surface without the need for fiber optics or laser processing heads. This laser has a wavelength of 455 ± 10nm, with continuously adjustable power and a maximum output power of over 3500W. It is mainly used for non-ferrous metal cladding, quenching, etc., to greatly improve processing efficiency and quality.

Figure 1: 3500W Free Output Blue Light Semiconductor Laser Cladding Sample

Experiment 1


Figure 2 (a-e) OM images of a single layer at different powers; (f) Geometric dimensions; (g) Fusion efficiency; (h) Comparison of fusion efficiency and other research results; (i) Schematic diagram of high-power infrared laser and (j) high-power blue laser processing

The Institute of Special Materials at Shanghai Jiao Tong University developed a 3500W, rectangular spot (7.5 mm2) blue laser additive manufacturing equipment based on Guangdong Institute of Hard Science and Technology and Zhuo Jie Laser. Using directional energy deposition technology, pure copper was successfully deposited on Inconel 718 chromium nickel iron alloy substrate, achieving a cladding efficiency of 62.84 mm2/s.

——Achieving ultra-high efficiency in directed energy deposition of pure copper on Inconel 718 substrate with a 3500 W blue laser,Materials Letters,Volume 372,2024.

Experiment 2

Figure 3 (a) B-LMD process (b) B-LMD process schematic diagram

 



Figure 4 (c) Comparison of tensile properties between B-LMD pure copper and other additive manufactured pure copper

The New Materials Research Institute of Guangdong Academy of Sciences, based on the 3500W, rectangular spot (7.5 mm2) blue laser additive manufacturing equipment developed by Guangdong Institute of Science and Technology and Zhuojie Laser, successfully deposited pure copper material on 316L stainless steel substrate through laser metal deposition process, with a density of 97.9%, tensile strength of 244 ± 9 MPa, yield strength of 158 ± 6MPa, all of which are the highest reported values so far. The elongation at break can reach 14.7 ± 0.8%, and the comprehensive performance is better than that of pure copper samples prepared by SLM and MEAM processes.

——Comprehensive study of microstructural evolution and strengthening mechanism of high-performance pure copper prepared by blue laser metal deposition (B-LMD), Materials Science and Engineering: A.

Source: KCTII Institute of Technology

Recomendações relacionadas
  • New, low-cost, and high-efficiency photonic integrated circuits

    The rapid development of photonic integrated circuits (PICs) has combined multiple optical devices and functions on a single chip, completely changing optical communication and computing systems.For decades, silicon-based PICs have dominated the field due to their cost-effectiveness and integration with existing semiconductor manufacturing technologies, despite their limitations in electro-optic ...

    2024-05-10
    Ver tradução
  • Generating dark and entangled states in optical cavities: unlocking new possibilities in quantum metrology

    Physicists have been working hard to improve the accuracy of atomic clocks, which are the most precise timing devices currently available. A promising way to achieve higher accuracy is to utilize spin squeezed states in clock atoms.Spin squeezed states are entangled quantum states in which particles work together to counteract their inherent quantum noise. These states provide incredible potential...

    2024-02-20
    Ver tradução
  • Atomstack leads the new track of intelligent laser engraving

    In today's rapidly developing technology, laser engraving technology is like a mysterious magician, constantly demonstrating amazing skills. In this field full of creativity and competition, Atomstack stands out with its outstanding technology and innovative spirit, becoming a leader in the new track.As the only enterprise in the semiconductor laser engraving machine industry with an annual shipme...

    2024-11-15
    Ver tradução
  • Fundamentals of Next Generation Photonic Semiconductors: Small Lasers

    This week, an illustration was published on the cover of the international journal Science, showcasing a powerful mode-locked laser emitted from a miniature photonic semiconductor.A research team led by Alireza Marandi, a professor of electrical engineering and applied physics at the California Institute of Technology, has successfully developed a conventional mode-locked laser large enough to fit...

    2023-11-13
    Ver tradução
  • Romania Center launches the world's most powerful laser

    Are you ready? The signal is out! "In the control room of a research center in Romania, engineer Antonio Toma has activated the world's most powerful laser, which is expected to make revolutionary progress in various fields from the health sector to space. The laser located in the center near the Romanian capital Bucharest is operated by the French company Thales and utilizes the invention of Nobe...

    2024-04-01
    Ver tradução