Português

Construction of Advanced New Laser Research Centers in American Universities

162
2024-10-30 11:51:58
Ver tradução

The ATLAS R&D center is expected to be completed by mid-2026!
A powerful new laser research facility located on the Foothills campus of Colorado State University will begin construction this month. The facility is planned to be put into use in mid-2026 and is the result of 40 years of laser development research at Colorado State University. It is a collaboration with the Fusion Energy Science Program of the US Department of Energy's Office of Science and has established a $150 million strategic public-private partnership with Marvel Fusion, which will be launched in 2023.

This new building will be called the Advanced Technology Laser Applications and Science (ATLAS) facility. One of the main research focuses of this facility is laser driven fusion as a viable clean energy source.

After completion, the facility will be equipped with an upgraded version of the existing ultra-high power laser developed by CSU, as well as two new lasers provided by Marvel. The ATLAS facility will consist of a set of high-intensity, high repetition rate lasers that can be configured to simultaneously emit towards a single fusion target. The explosion will provide nearly 7 watts of power to a focal point with a diameter of approximately 100 μ m. These three ultra-high power lasers can also be used alone or in other combinations to study issues beyond fusion energy.

In addition to nuclear fusion and basic scientific research, the ATLAS facility will also support interdisciplinary research such as medicine. Among them, laser can be used to deposit energy in very localized areas to treat tumors. Other potential research for this facility includes microchip lithography and design, as well as detailed X-ray imaging of rapidly moving objects. The existing and new facilities will be combined and collectively referred to as the Advanced Extreme Photonics Laser (ALEPH) Center.

In addition, the LaserNetUS project has awarded $12.5 million to the university and a $16 million prize to launch the Inertial Fusion Science and Technology Center. These grants support research using existing campus facilities, including upgrading high-power ALEPH lasers.

The leading position of CSU in the field of laser research is mainly attributed to the work of outstanding professors Jorge Rocca and Carmen Menoni at the university. They are all members of the Department of Electrical and Computer Engineering, with Rocca still working in the Department of Physics and Menoni working in the Department of Chemistry. For many years, the two have been leading interdisciplinary research on this topic at university.

Source: OFweek

Recomendações relacionadas
  • Sunny Optical's "Optical Imaging Lens" Announced

    Recently, according to the information of the China National Intellectual Property Administration, Zhejiang Sunny Optics Co., Ltd. has obtained a patent named "Optical Imaging Lens", with authorization announcement No. CN221899396U and application date of 2024-01-31.The patent abstract shows that the present application discloses an optical imaging lens, comprising a barrel and first to eighth len...

    2024-10-31
    Ver tradução
  • On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

    Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse inter...

    2024-01-12
    Ver tradução
  • Ruifeng high power ultraviolet laser will become an indispensable tool in the production of thin film solar cells in the future

    With the rise of clean energy and the enhancement of environmental awareness, thin film solar cells are gradually replacing traditional silicon-based solar cells as an efficient energy conversion device.However, to achieve efficient solar cell conversion rates, the key is to ensure that thin film solar cells have clear edges and maximize light absorption. In this regard, the unique advantages of h...

    2023-09-08
    Ver tradução
  • This laser and optoelectronic component supplier has reached a strategic distribution agreement

    Recently, Laser Components USA, a leading laser and optoelectronic component supplier, announced that it has reached a strategic distribution agreement with Infrasolid, a pioneer in advanced infrared emitter technology.This agreement combines Laser Components USA's extensive distribution network with Infrasolid's innovative infrared product solutions, providing direct replacement products for all ...

    2023-10-24
    Ver tradução
  • The LANL Laboratory in the United States has achieved a light source that generates a circularly polarized single photon stream using a quantum light emitter

    Los Alamos National Laboratory (LANL) has developed a method for a quantum light emitter that stacks two different atomically thin materials together to achieve a light source that produces a stream of circularly polarized single photons. These light sources can in turn be used for a variety of quantum information and communication applications.According to Los Alamos researcher Han Htoon, the wor...

    2023-09-02
    Ver tradução