Português

Peking University has made significant progress in the field of photonic chip clocks

621
2025-02-28 10:12:51
Ver tradução

Recently, the research team of Chang Lin from the School of Electronics of Peking University and the research team of Li Wangzhe from the Aerospace Information Research Institute of the Chinese Academy of Sciences published a research article entitled "Microcomb synchronized optoelectronics" online in Nature Electronics, realizing the application of photonic chip clocks in information systems for the first time in the world. This technology is based on mass-produced ultra-low loss silicon nitride photonic chips, which generate high-precision and low-noise clock signals through optical frequency combs, breaking through the performance bottlenecks of traditional electronic chips in terms of clock bandwidth, energy consumption, and noise. This provides an important solution for the development of future ultra high speed chips.

In today's information age, the demand for high-speed and broadband performance in electronic systems is exploding. Traditional electronic technology has many problems when generating high-frequency signals, such as narrow bandwidth, easy signal distortion, and high power consumption. In optoelectronic systems, the frequency of optical synthesized signals and electronic clocks is severely mismatched, leading to synchronization difficulties. This not only reduces processing accuracy, but also slows down information transmission speed. Although there have been synchronization strategies before, most of them require additional hardware and complex operations, making them difficult to widely apply. To overcome these challenges, the research team has jointly developed an oscillator based on on-chip micro combs for synchronization in optoelectronic systems. This oscillator combines micro comb and self injection locking technology with integrated ultra-high Q-value resonators to synthesize microwave signals covering from megahertz to 105 GHz, providing a shared time-frequency reference for the system and enabling natural synchronization of optical and electronic signals.

The research team further demonstrated a multi band sensing integrated system based on this chip, which achieved multiple functions in different electromagnetic wave bands such as 5G, 6G, and millimeter wave radar through a single chip. Flexible switching between sensing and communication modes. This innovative design not only simplifies the hardware structure, but also significantly reduces the complexity and cost of the system. The system achieves centimeter level perception accuracy and 6G communication with modulation formats up to 256-QAM.


Time frequency synchronization strategy for optoelectronic systems


In the future, this technology is expected to be widely applied in multiple fields. For example, in processor chips, this solution can increase the clock frequency to over 100G, providing far more computing power than current chips; In mobile base stations, it can significantly reduce the energy consumption and cost of devices; In the field of autonomous driving, the integrated design of millimeter wave radar will help improve perception accuracy and response speed. The breakthrough of this technology will bring revolutionary changes to the fields of communication and perception, promoting the rapid development of related industries.

The co first authors of this paper are Zhang Xiangpeng, a postdoctoral fellow at the School of Electronics, Peking University, and doctoral students Zhang Xuguang and Chen Yujun. Chang Lin, a researcher from the School of Electronics of Peking University, Li Wangzhe, a researcher from the Aerospace Information Institute of the Chinese Academy of Sciences, and Professor John E. Bowers of the University of California, Santa Barbara, are the co corresponding authors of the paper. The main collaborators also include Professor Wang Xingjun and Professor Hu Weiwei from the School of Electronics, Peking University, postdoctoral researcher Lao Chenghao, doctoral students Zhou Zixuan and Huang Jiahui, Dr. Warren Jin from the University of California, Santa Barbara, Associate Researcher Dong Jingwen, Associate Researcher Ma Weichao, and First level Assistant Researcher Liu Chenyu from the Institute of Aerospace Information, China Academy of Aerospace Sciences. This work was completed by the State Key Laboratory of Regional Optical Fiber Communication Network and New Optical Communication System of School of Electronics, Peking University as the first unit.

Source: opticsky

Recomendações relacionadas
  • It is said that laser additive manufacturing is good, but what is the advantage?

    When it comes to additive manufacturing, some people may not have heard of it, but when it comes to its other name: 3D printing, no one is unaware.In fact, the name 'additive manufacturing' better illustrates the essence of this processing method. From ancient times to the present, humans have put in great effort to achieve the goal of processing 'raw materials into the shapes we need'. From the S...

    2023-11-08
    Ver tradução
  • Allocate 10 billion US dollars! New York State to Build NA Extreme UV Lithography Center

    On December 11th local time, New York State announced a partnership with companies such as IBM, Micron, Applied Materials, and Tokyo Electronics to jointly invest $10 billion to expand the Albany NanoTech Complex in New York State, ultimately transforming it into a high numerical aperture extreme ultraviolet (NA EUV) lithography center to support the development of the world's most complex and pow...

    2023-12-15
    Ver tradução
  • Vector Photonics accelerates the commercialization of PCSEL laser technology

    Recently, Vector Photonics, a well-known surface coupled laser technology supplier in the UK, announced that the company has received £ 3 million in financing (including £ 1.667 million in equity investment and £ 1.27 million in additional research funding, equivalent to approximately RMB 27.63 million) to help commercialize its surface coupled laser technology.(Image source: Vector Photonics)Vect...

    2024-07-04
    Ver tradução
  • Scientists plan to build particle accelerator to power giant chip factory

    Scientists are exploring new ways to get around limitations on the lithography machines used to produce microchips. Researchers are using particle accelerators to create new laser sources that could lay the foundation for the future of semiconductor manufacturing.Plans are underway to build a particle accelerator with a circumference between 100 and 150 meters (328 and 492 feet), about the size of...

    2023-09-25
    Ver tradução
  • Quantum droplets reveal a new field of macroscopic complexity

    Scientists have advanced this field by stabilizing exciton polaritons in semiconductor photonic gratings, achieving long-lived and optically configurable quantum fluids suitable for complex system simulations.Researchers from Leicester CNR Nanotec and the School of Physics at the University of Warsaw used a new generation of semiconductor photonic gratings to optically customize the composite of q...

    2024-03-28
    Ver tradução