Русский

Scientists develop flat-topped laser beams to overcome Gaussian distribution limitations

142
2023-08-04 16:39:10
Посмотреть перевод

The beam emitted by almost all laser systems follows the Angle pattern of Gaussian distribution. The Gaussian irradiance distribution means that irradiance has a smooth peak at the center point and slowly declines toward the edge. In theory, the irradiance level of a Gaussian distribution can never reach zero, which means that the distribution can expand indefinitely. This phenomenon in the laser beam results in a large amount of light energy being wasted. However, for a variety of practical applications, we need a laser beam system that minimizes light energy waste. To solve this problem, flat-topped laser beams have been developed to overcome the limitations of Gaussian distribution and provide a beam distribution with sharp edges and uniform irradiance.

The role of DOE in beam shaping

Since a laser beam naturally does not exhibit a flat-topped beam profile, we need to convert a Gaussian beam to a flat-topped beam using an add-on or a beam shaper. This modification enables the beam profile to be used for a variety of laser applications. Analytical beam shaper and diffuser Beam shapers are the two main types of flat-top laser beam shapers.

 

A DOE (or diffractive Optical element) is an analytical beam shaper consisting of a single element designed to change the wavefront of a beam. DOE is a computer-generated hologram (CGH) combined with a specific delay topology that exploits the properties of light waves. The structure of the DOE can be designed to perform complex changes to coherent beams, such as laser beams.

 

Diffractive optical elements (DOE) introduce precise phase transitions for the beam. As the beam propagates, this phase transition produces a smooth, flat-topped irradiance distribution at the focal point. The shape of the profile can be customized on request, such as round, square, rectangular or straight.

 

Therefore, the main advantage of using such beam shapers is their excellent performance in terms of coherent beams such as TEM00 Gaussian beams with low M2 values. This type of input coherent beam has important applications in the laser material processing industry. In contrast, the use of diffuse elements as beam shapers is common in multi-mode, low-coherence laser beams.

 

DOE beam shaper Settings

The setup of the beam shaper consists of a laser beam entering the DOE and a focusing lens (such as an F-Theta lens) placed behind the DOE. The aim is to reproduce the far field of DOE in the focal plane. The beam shaper performs best when the through-light aperture of the lens is twice or more that of the DOE and the lens has no aberrations.

 

Application field

Flat-topped laser beam profiles have important applications in various industries such as semiconductors and microelectronics, where these beam irradiance profiles can be used for tasks such as drilling, copper removal, and contact scribing. The top hat laser beam also has important applications in high-tech manufacturing, green energy industry, especially laser metal processing industry.

 

Source: Laser Network

Связанные рекомендации
  • German research institute develops a new nanosecond laser process

    Recently, the Fraunhofer Institute (HHI) has developed a technology for processing aluminum alloy materials using reactive gas assisted nanosecond lasers, which can be used to produce electronic box samples for spacecraft manufacturing. This development project is part of the NanoBLAST project, in close collaboration with thermal engineering company Azimut Space GmbH, aimed at manufacturing surfac...

    2024-09-10
    Посмотреть перевод
  • WVU engineers develop laser systems to protect space assets from the impact of Earth orbit debris

    The research from the University of West Virginia has been rewarded, as debris scattered in planetary orbits that pose a threat to spacecraft and satellites may be pushed away from potential collision paths by a coordinated space laser network.Hang Woon Lee, director of the Space Systems Operations Research Laboratory at the University of West Virginia, said that artificial debris dumps, including...

    2023-10-10
    Посмотреть перевод
  • Laser giant seeks $100 million financing for $422 million debt restructuring

    On August 6th local time, Luminar, a leading publicly traded company in the field of LiDAR, announced a $422 million debt restructuring and raised $100 million in new capital. This measure marks Luminar taking solid steps in optimizing its capital structure and enhancing its financial stability.In early May this year, this laser radar manufacturer released an open letter disclosing a major strateg...

    2024-08-09
    Посмотреть перевод
  • Scientists use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage

    Scientists at the City University of New York use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage. This technology is published in the journal Nature Nanotechnology and allows for encoding multiple bytes of data into the same nitrogen defect at multiple optical frequencies, without confusing the information content.The common laser based techn...

    2023-12-07
    Посмотреть перевод
  • Mirico successfully raised $2 million with unique laser dispersion spectroscopy technology

    In the field of high-performance gas sensing intelligence, Mirico stands out with its unique laser dispersive spectroscopy (LDS) technology, successfully raising $2 million in the latest round of financing.Recently, Mirico announced this good news. This financing is led by Shell Ventures and New Climate Ventures, with support from the UK Innovation and Science Seed Fund (UKI2S) and other existing ...

    2024-06-28
    Посмотреть перевод