Русский

Progress has been made in the research of single shot characterization technology for complex combination laser pulses at Shanghai Institute of Optics and Fine Mechanics

81
2025-03-24 17:17:38
Посмотреть перевод


Recently, the research team of the High Power Laser Physics Joint Laboratory at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made significant progress in the study of single shot characterization technology for complex combination laser pulses. The research team utilized an improved broadband transient grating frequency resolved optical switch technology (TG-FROG) to achieve complete characterization of complex high-power laser pulses in a single shot, and revealed the dynamic evolution law of ultra short pulses during nonlinear frequency conversion. The related research results were published in Optics Express under the title "Single shot complete characterization of synthesized laser pulses and non-linear frequency conversion process".

The combination of laser fields (pulse combinations with different polarizations, center wavelengths, or pulse widths) has important applications in fields such as ultrafast spectroscopy and high-order harmonic generation, but its precise measurement faces multiple challenges. Traditional methods are limited by polarization sensitivity, insufficient measurement bandwidth, or the need for multiple measurements, making it difficult to meet the real-time diagnostic requirements of high-power, low repetition rate laser systems. In addition, the dynamic characteristics of the nonlinear frequency transformation process of complex pulses lack effective observation methods, which restricts the optimization and application expansion of laser systems.

In response to the above challenges, the research team based on improved TG-FROG measurement technology, designed a self referencing and reflective structure with a wideband imaging spectrometer, to achieve single measurement support for at least 460nm spectral range, with a time resolution of 5.81 fs and spectral resolution better than 0.13 nm. The synchronous observation of waveform and spectral evolution of fundamental frequency pulses and second harmonic pulses during nonlinear frequency conversion has been achieved, revealing complex modulation effects such as spectral broadening, redshift, and time-domain multi peak structure under high-energy injection. And successfully measured the dual color pulse with spectral time-domain separation generated by the cascaded second harmonic process, and analyzed its time delay (208.4 fs) and relative phase (0.29 rad), breaking through the phase ambiguity limitation. This method not only provides a good measurement method for optimizing the waveform and contrast of ultra wideband laser pulses, but also provides a powerful diagnostic tool for complex nonlinear optical physical processes.

Figure 1 (a) Single broadband TG FROG device; (b) The process of broadband nonlinear frequency transformation and the experimental optical path diagram of dual pulse measurement.

Figure 2 TG-FROG synchronous measurement results of fundamental frequency pulse and second harmonic pulse during SHG process under high injection energy

Source: opticsky

Связанные рекомендации
  • Nature Photonics | New Comb Laser Assists Stable and Efficient Generation of Multi wavelength Signals

    Recently, researchers have developed a comb laser with higher stability and efficiency. The use of synthetic reflection self injection locking micro comb design enables the laser to achieve stability and increase conversion efficiency by more than 15 times. This efficient, stable, and easy to manufacture design is expected to make rapid progress in fields such as portable sensors, autonomous navig...

    2024-03-02
    Посмотреть перевод
  • Samsung Heavy Industries Developing a Laser High Speed Welding Robot for Liquefied Natural Gas Ships

    South Korea's Samsung Heavy Industry announced on Thursday that it has developed the first laser high-speed welding robot in the maritime field, aimed at significantly improving the construction efficiency of liquefied natural gas (LNG) transport ships.This new technology is specifically designed for rapid welding of thin film panels used in cargo compartments of liquefied natural gas transport sh...

    2023-09-22
    Посмотреть перевод
  • Dalian Institute of Chemical Physics has made progress in the interdisciplinary field of photochemistry and photophysics

    Recently, the team led by Wu Kaifeng, a researcher at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, and Zhu Jingyi, an associate researcher, has made progress in the interdisciplinary field of photochemistry and photophysics. The team directly observed the quantum coherence properties of hybrid free radical pairs composed of quantum dots and organic molecules, achieving ef...

    01-09
    Посмотреть перевод
  • The globalization of three-color laser technology will be further accelerated

    Recently, the IFA2023 Consumer Electronics Show in Berlin, Germany opened, Hisense exhibited "three-color laser projection family bucket" attracted the attention of media and tourists from all over the world.Since Hisense's young fashion brand Vidda launched a series of three-color laser projection, its accumulation based on three-color laser technology is competing globally and has become a...

    2023-09-04
    Посмотреть перевод
  • 20 million dollars! Undersea fiber optic agreement reached, fully operational by 2026

    Recently, Confluence Networks LLC has announced a long-term partnership agreement with Laser Light Communications Inc., a developer and provider of software controlled optical network services.According to the agreement, Laser Light will adopt Confluence-1 submarine fiber optic network, which Confluence Networks is about to launch, as the core part of its global network. The protocol will last for...

    2024-05-24
    Посмотреть перевод