Русский

New research on achieving femtosecond laser machining of multi joint micromachines

129
2023-09-15 14:06:09
Посмотреть перевод

The team of Wu Dong, professor of the Micro/Nano Engineering Laboratory of University of Science and Technology of China, proposed a processing strategy of femtosecond laser two in one writing into multiple materials, manufactured a micromechanical joint composed of temperature sensitive hydrogel and metal nanoparticles, and then developed a multi joint humanoid micromachine with multiple deformation modes (>10). The relevant research results were recently published in Nature Communications.

In recent years, femtosecond laser two-photon polymerization technology has been widely used as a true three-dimensional machining method with nano precision to manufacture various functional microstructures. These microstructures exhibit broad application prospects in fields such as micro nano optics, micro sensors, and micro machine systems. However, it is still highly challenging to utilize femtosecond lasers to achieve composite multi material processing and further construct multimodal micro/nano machinery.

Femtosecond laser two in one processing strategy includes the use of asymmetric two-photon polymerization to build hydrogel joints, and laser reduction deposition of silver nanoparticles in the local area of the joint. Among them, the asymmetric photopolymerization technology makes the cross-linking density of the local area of the hydrogel micro joint produce anisotropy, and finally enables it to realize the bending deformation with controllable direction and angle.

In situ laser reduction deposition can accurately process silver nanoparticles on hydrogel joints. These silver nanoparticles have a strong photothermal conversion effect, which enables the mode switching of multi joint micromachines to exhibit excellent characteristics such as ultra-short response time (30 milliseconds) and ultra-low driving power (<10 milliwatts).

As a typical example, 8 micro joints are integrated into a humanoid micromachine. Subsequently, researchers utilized spatial light modulation technology to achieve multifocal beams in 3D space, thereby accurately stimulating each micro joint. The collaborative deformation between multiple joints promotes the completion of multiple reconfigurable deformation modes in humanoid micro robotic arms. Finally, at the micrometer scale, humanoid micromachines "danced".

In concept validation, by designing the distribution and deformation direction of micro joints, a dual joint micro robotic arm can collect multiple micro particles in the same and opposite directions. In summary, the femtosecond laser two in one machining strategy can construct deformable micro joints in various local areas of three-dimensional microstructures, achieving various reconfigurable deformation modes.
Researchers have introduced that micro robotic arms with multiple deformation modes will exhibit broad application prospects in micro cargo collection, microfluidic manipulation, and cell manipulation.

Source: Micro and Nano Engineering Laboratory, University of Science and Technology of China

Связанные рекомендации
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the research of interferometer wavefront calibration methods

    Recently, the research team of the High end Optoelectronic Equipment Department at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of wavefront calibration methods for interferometer testing. The relevant research results were published in Optics Express under the title of "High precision wavefront correction method ininterometer tes...

    2024-07-23
    Посмотреть перевод
  • Automated methods for background estimation in laser spectroscopy

    A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the lase...

    2023-11-24
    Посмотреть перевод
  • Focusing on Lithuanian solid-state and fiber laser manufacturer EKSPLA

    In this interview, Dr. Antonio Castelo, EPIC Biomedical and Laser Technology Manager, had a conversation with Aldas Juronis, CEO of EKSPLA, a Lithuanian innovative solid-state and fiber laser manufacturer.What is the background of your appointment as the CEO of EKSPLA?In 1994, I graduated from Kaonas University of Technology in Lithuania with a Bachelor's degree in Radio Electronic Engineering. At...

    2023-11-07
    Посмотреть перевод
  • The role of PTFE in laser processing

    Polytetrafluoroethylene (PTFE) has improved the efficiency and repeatability of nanosecond and picosecond laser processing technologies used in microelectronics and display glass manufacturing. In the field of precision manufacturing, the demand for efficient and repeatable processes is crucial. The laser structure of glass and laser ablation of silicon substrates are key areas where precision p...

    2024-07-26
    Посмотреть перевод
  • Panacol showcases a new optical grade adhesive on Photonics West

    Panacol will showcase new optical grade resins and adhesives for embossing and optical bonding applications at the SPIE Photonics West exhibition held in San Francisco, California, USA from January 30 to February 1, 2024.These new adhesives can be used for sensors in lightweight carpets, smart devices, and wearable devices in the automotive industry, or for generating structured light in projector...

    2023-12-12
    Посмотреть перевод